基于对象查询的视频摘要

Shweta S Kakodra, C. Sujatha, P. Desai
{"title":"基于对象查询的视频摘要","authors":"Shweta S Kakodra, C. Sujatha, P. Desai","doi":"10.1109/CONIT51480.2021.9498311","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a framework for query-by-object(s) based video synopsis. Video Synopsis aims to create a summary of video by retaining the important activities/events present in the input video. We propose creating a shorter video by selecting salient frames based on the important objects present in the video. We train the Yolov3 model with surveillance videos for object detection. Select the frames as salient based on the importance of objects present in a frame and generate the video synopsis with the salient frames. We demonstrate the proposed method on the Summe and TV Sum dataset and own dataset captured from the surveillance camera. We obtain the average F1 score as 93% and average accuracy as 94%. And also show that proposed method gives better results as compared to VASNET model.","PeriodicalId":426131,"journal":{"name":"2021 International Conference on Intelligent Technologies (CONIT)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Query-By-Object Based Video Synopsis\",\"authors\":\"Shweta S Kakodra, C. Sujatha, P. Desai\",\"doi\":\"10.1109/CONIT51480.2021.9498311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a framework for query-by-object(s) based video synopsis. Video Synopsis aims to create a summary of video by retaining the important activities/events present in the input video. We propose creating a shorter video by selecting salient frames based on the important objects present in the video. We train the Yolov3 model with surveillance videos for object detection. Select the frames as salient based on the importance of objects present in a frame and generate the video synopsis with the salient frames. We demonstrate the proposed method on the Summe and TV Sum dataset and own dataset captured from the surveillance camera. We obtain the average F1 score as 93% and average accuracy as 94%. And also show that proposed method gives better results as compared to VASNET model.\",\"PeriodicalId\":426131,\"journal\":{\"name\":\"2021 International Conference on Intelligent Technologies (CONIT)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Intelligent Technologies (CONIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONIT51480.2021.9498311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Intelligent Technologies (CONIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONIT51480.2021.9498311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一个基于对象查询的视频摘要框架。视频摘要旨在通过保留输入视频中出现的重要活动/事件来创建视频摘要。我们建议通过根据视频中出现的重要对象选择突出帧来创建一个较短的视频。我们用监控视频训练Yolov3模型进行目标检测。根据一帧中存在的对象的重要性选择帧作为突出帧,并生成具有突出帧的视频摘要。我们在Summe和TV Sum数据集以及从监控摄像机捕获的自己的数据集上演示了所提出的方法。我们得到F1平均得分为93%,平均准确率为94%。结果表明,与VASNET模型相比,该方法具有更好的拟合效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Query-By-Object Based Video Synopsis
In this paper, we propose a framework for query-by-object(s) based video synopsis. Video Synopsis aims to create a summary of video by retaining the important activities/events present in the input video. We propose creating a shorter video by selecting salient frames based on the important objects present in the video. We train the Yolov3 model with surveillance videos for object detection. Select the frames as salient based on the importance of objects present in a frame and generate the video synopsis with the salient frames. We demonstrate the proposed method on the Summe and TV Sum dataset and own dataset captured from the surveillance camera. We obtain the average F1 score as 93% and average accuracy as 94%. And also show that proposed method gives better results as compared to VASNET model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信