微型水轮机功率拓扑概述

S. Nababan, E. Muljadi, F. Blaabjerg
{"title":"微型水轮机功率拓扑概述","authors":"S. Nababan, E. Muljadi, F. Blaabjerg","doi":"10.1109/PEDG.2012.6254084","DOIUrl":null,"url":null,"abstract":"This paper is an overview of different power topologies of micro-hydro turbines. The size of micro-hydro turbine is typically under 100kW. Conventional topologies of micro-hydro power are stand-alone operation used in rural electrical network in developing countries. Recently, many of micro-hydro power generations are connected to the distribution network through power electronics (PE). This turbines are operated in variable frequency operation to improve efficiency of micro-hydro power generation, improve the power quality, and ride through capability of the generation. In this paper our discussion is limited to the distributed generation. Like many other renewable energy sources, the objectives of micro-hydro power generation are to reduce the use of fossil fuel, to improve the reliability of the distribution system (grid), and to reduce the transmission losses. The overview described in this paper includes micro-hydro power generation, stand-alone topologies, fixed speed generation (FSG), variable speed generation (VSG), direct-connected grid integration topology, and PE grid integration topologies.","PeriodicalId":146438,"journal":{"name":"2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"An overview of power topologies for micro-hydro turbines\",\"authors\":\"S. Nababan, E. Muljadi, F. Blaabjerg\",\"doi\":\"10.1109/PEDG.2012.6254084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is an overview of different power topologies of micro-hydro turbines. The size of micro-hydro turbine is typically under 100kW. Conventional topologies of micro-hydro power are stand-alone operation used in rural electrical network in developing countries. Recently, many of micro-hydro power generations are connected to the distribution network through power electronics (PE). This turbines are operated in variable frequency operation to improve efficiency of micro-hydro power generation, improve the power quality, and ride through capability of the generation. In this paper our discussion is limited to the distributed generation. Like many other renewable energy sources, the objectives of micro-hydro power generation are to reduce the use of fossil fuel, to improve the reliability of the distribution system (grid), and to reduce the transmission losses. The overview described in this paper includes micro-hydro power generation, stand-alone topologies, fixed speed generation (FSG), variable speed generation (VSG), direct-connected grid integration topology, and PE grid integration topologies.\",\"PeriodicalId\":146438,\"journal\":{\"name\":\"2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEDG.2012.6254084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDG.2012.6254084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

本文概述了微型水轮机的不同功率拓扑结构。微型水轮机的功率一般在 100 千瓦以下。微型水力发电的传统拓扑结构是独立运行,用于发展中国家的农村电网。最近,许多微型水力发电通过电力电子设备(PE)连接到配电网络。这种涡轮机采用变频运行,以提高微型水力发电的效率、改善电能质量和发电的穿越能力。本文的讨论仅限于分布式发电。与许多其他可再生能源一样,微型水力发电的目标是减少化石燃料的使用、提高配电系统(电网)的可靠性和减少输电损耗。本文概述了微型水力发电、独立拓扑结构、定速发电(FSG)、变速发电(VSG)、直接并网拓扑结构和 PE 并网拓扑结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An overview of power topologies for micro-hydro turbines
This paper is an overview of different power topologies of micro-hydro turbines. The size of micro-hydro turbine is typically under 100kW. Conventional topologies of micro-hydro power are stand-alone operation used in rural electrical network in developing countries. Recently, many of micro-hydro power generations are connected to the distribution network through power electronics (PE). This turbines are operated in variable frequency operation to improve efficiency of micro-hydro power generation, improve the power quality, and ride through capability of the generation. In this paper our discussion is limited to the distributed generation. Like many other renewable energy sources, the objectives of micro-hydro power generation are to reduce the use of fossil fuel, to improve the reliability of the distribution system (grid), and to reduce the transmission losses. The overview described in this paper includes micro-hydro power generation, stand-alone topologies, fixed speed generation (FSG), variable speed generation (VSG), direct-connected grid integration topology, and PE grid integration topologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信