区间2型模糊共聚类算法

Van Nha Pham, L. Ngo
{"title":"区间2型模糊共聚类算法","authors":"Van Nha Pham, L. Ngo","doi":"10.1109/FUZZ-IEEE.2015.7337960","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel clustering technique by combining fuzzy co-clustering approach and interval type-2 fuzzy sets. The proposed algorithm is demonstrated through experiments on UC Berkeley image data-sets to conduct clustering on color images. The experimental results show that the clustering quality is better by evaluating using validity indexes in comparison with previous methods.","PeriodicalId":185191,"journal":{"name":"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Interval type-2 fuzzy co-clustering algorithm\",\"authors\":\"Van Nha Pham, L. Ngo\",\"doi\":\"10.1109/FUZZ-IEEE.2015.7337960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel clustering technique by combining fuzzy co-clustering approach and interval type-2 fuzzy sets. The proposed algorithm is demonstrated through experiments on UC Berkeley image data-sets to conduct clustering on color images. The experimental results show that the clustering quality is better by evaluating using validity indexes in comparison with previous methods.\",\"PeriodicalId\":185191,\"journal\":{\"name\":\"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ-IEEE.2015.7337960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2015.7337960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文将模糊共聚类方法与区间2型模糊集相结合,提出了一种新的聚类方法。通过UC Berkeley图像数据集的实验验证了该算法对彩色图像进行聚类。实验结果表明,通过有效性指标对聚类质量进行评价,聚类质量优于以往的聚类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interval type-2 fuzzy co-clustering algorithm
This paper introduces a novel clustering technique by combining fuzzy co-clustering approach and interval type-2 fuzzy sets. The proposed algorithm is demonstrated through experiments on UC Berkeley image data-sets to conduct clustering on color images. The experimental results show that the clustering quality is better by evaluating using validity indexes in comparison with previous methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信