Yixuan Li, Jiaming Qian, Shijie Feng, Qian Chen, C. Zuo
{"title":"基于深度学习的端到端单镜头复合条纹投影轮廓术","authors":"Yixuan Li, Jiaming Qian, Shijie Feng, Qian Chen, C. Zuo","doi":"10.1117/12.2587728","DOIUrl":null,"url":null,"abstract":"Using a single fringe image to complete the dynamic absolute 3D reconstruction has become a tremendous challenge and an eternal pursuit for researchers. In fringe projection profilometry (FPP), although many methods can achieve high-precision 3D reconstruction from simple system architecture via appropriate encoding ways, they usually cannot retrieve the absolute 3D information of objects with complex surfaces through only a single fringe pattern. In this work, we develop a single-frame composite fringe encoding approach and use a deep convolutional neural network to retrieve the absolute phase of the object from this composite pattern end to- end. The proposed method can directly obtain spectrum-aliasing-free phase information and robust phase unwrapping from single-frame compound input through extensive data learning. Experiments have demonstrated that the proposed deep-learning-based approach can achieve absolute phase retrieval using a single image.","PeriodicalId":370739,"journal":{"name":"International Conference on Photonics and Optical Engineering and the Annual West China Photonics Conference","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"End-to-end single-shot composite fringe projection profilometry based on deep learning\",\"authors\":\"Yixuan Li, Jiaming Qian, Shijie Feng, Qian Chen, C. Zuo\",\"doi\":\"10.1117/12.2587728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using a single fringe image to complete the dynamic absolute 3D reconstruction has become a tremendous challenge and an eternal pursuit for researchers. In fringe projection profilometry (FPP), although many methods can achieve high-precision 3D reconstruction from simple system architecture via appropriate encoding ways, they usually cannot retrieve the absolute 3D information of objects with complex surfaces through only a single fringe pattern. In this work, we develop a single-frame composite fringe encoding approach and use a deep convolutional neural network to retrieve the absolute phase of the object from this composite pattern end to- end. The proposed method can directly obtain spectrum-aliasing-free phase information and robust phase unwrapping from single-frame compound input through extensive data learning. Experiments have demonstrated that the proposed deep-learning-based approach can achieve absolute phase retrieval using a single image.\",\"PeriodicalId\":370739,\"journal\":{\"name\":\"International Conference on Photonics and Optical Engineering and the Annual West China Photonics Conference\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Photonics and Optical Engineering and the Annual West China Photonics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2587728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Photonics and Optical Engineering and the Annual West China Photonics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2587728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
End-to-end single-shot composite fringe projection profilometry based on deep learning
Using a single fringe image to complete the dynamic absolute 3D reconstruction has become a tremendous challenge and an eternal pursuit for researchers. In fringe projection profilometry (FPP), although many methods can achieve high-precision 3D reconstruction from simple system architecture via appropriate encoding ways, they usually cannot retrieve the absolute 3D information of objects with complex surfaces through only a single fringe pattern. In this work, we develop a single-frame composite fringe encoding approach and use a deep convolutional neural network to retrieve the absolute phase of the object from this composite pattern end to- end. The proposed method can directly obtain spectrum-aliasing-free phase information and robust phase unwrapping from single-frame compound input through extensive data learning. Experiments have demonstrated that the proposed deep-learning-based approach can achieve absolute phase retrieval using a single image.