用系统Metzler矩阵确定正稳定实现

T. Kaczorek
{"title":"用系统Metzler矩阵确定正稳定实现","authors":"T. Kaczorek","doi":"10.1109/MMAR.2011.6031323","DOIUrl":null,"url":null,"abstract":"Conditions for the existence of positive stable realizations with system Metzler matrices for linear continuous-time systems are established. A procedure for finding a positive stable realization with system Metzler matrix based on similarity transformation of proper transfer matrices is proposed and demonstrated on numerical examples. It is shown that if the poles of stable transfer matrix are real then the classical Gilbert method can be used to find the positive stable realization.","PeriodicalId":440376,"journal":{"name":"2011 16th International Conference on Methods & Models in Automation & Robotics","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Deterimination of positive stable realizations with system Metzler matrices\",\"authors\":\"T. Kaczorek\",\"doi\":\"10.1109/MMAR.2011.6031323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conditions for the existence of positive stable realizations with system Metzler matrices for linear continuous-time systems are established. A procedure for finding a positive stable realization with system Metzler matrix based on similarity transformation of proper transfer matrices is proposed and demonstrated on numerical examples. It is shown that if the poles of stable transfer matrix are real then the classical Gilbert method can be used to find the positive stable realization.\",\"PeriodicalId\":440376,\"journal\":{\"name\":\"2011 16th International Conference on Methods & Models in Automation & Robotics\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 16th International Conference on Methods & Models in Automation & Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMAR.2011.6031323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 16th International Conference on Methods & Models in Automation & Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2011.6031323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

建立了线性连续系统具有系统Metzler矩阵的正稳定实现的存在条件。提出了一种基于固有传递矩阵相似变换的求系统梅茨勒矩阵正稳定实现的方法,并通过数值算例进行了说明。结果表明,如果稳定传递矩阵的极点是实数,则经典的吉尔伯特方法可以用来寻找正的稳定实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deterimination of positive stable realizations with system Metzler matrices
Conditions for the existence of positive stable realizations with system Metzler matrices for linear continuous-time systems are established. A procedure for finding a positive stable realization with system Metzler matrix based on similarity transformation of proper transfer matrices is proposed and demonstrated on numerical examples. It is shown that if the poles of stable transfer matrix are real then the classical Gilbert method can be used to find the positive stable realization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信