数据时代的过拟合问题与过度训练:特别是人工神经网络

Imanol Bilbao, J. Bilbao
{"title":"数据时代的过拟合问题与过度训练:特别是人工神经网络","authors":"Imanol Bilbao, J. Bilbao","doi":"10.1109/INTELCIS.2017.8260032","DOIUrl":null,"url":null,"abstract":"When we try to classify a set of data or to create a model to a cloud of points, different techniques can be used. Among them, Artificial Neural Networks are nowadays reinvented with the peak of the Machine Learning, Big Data, etc. In the process to find the best classification and be sure on it, one of the biggest concerns that we can come up against is the problem of overfitting. In this paper, we analyze it and set out a case study.","PeriodicalId":321315,"journal":{"name":"2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":"{\"title\":\"Overfitting problem and the over-training in the era of data: Particularly for Artificial Neural Networks\",\"authors\":\"Imanol Bilbao, J. Bilbao\",\"doi\":\"10.1109/INTELCIS.2017.8260032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When we try to classify a set of data or to create a model to a cloud of points, different techniques can be used. Among them, Artificial Neural Networks are nowadays reinvented with the peak of the Machine Learning, Big Data, etc. In the process to find the best classification and be sure on it, one of the biggest concerns that we can come up against is the problem of overfitting. In this paper, we analyze it and set out a case study.\",\"PeriodicalId\":321315,\"journal\":{\"name\":\"2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"70\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTELCIS.2017.8260032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTELCIS.2017.8260032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

摘要

当我们试图对一组数据进行分类或为点云创建模型时,可以使用不同的技术。其中,人工神经网络如今随着机器学习、大数据等的高峰而被重塑。在寻找并确定最佳分类的过程中,我们可能遇到的最大问题之一是过拟合问题。本文对此进行了分析,并进行了案例研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Overfitting problem and the over-training in the era of data: Particularly for Artificial Neural Networks
When we try to classify a set of data or to create a model to a cloud of points, different techniques can be used. Among them, Artificial Neural Networks are nowadays reinvented with the peak of the Machine Learning, Big Data, etc. In the process to find the best classification and be sure on it, one of the biggest concerns that we can come up against is the problem of overfitting. In this paper, we analyze it and set out a case study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信