矩形分割图像压缩技术中各种稀疏矩阵存储格式的空间复杂度分析

Sumithra Sriram, B. J. Saira, Rajasekhara Babu
{"title":"矩形分割图像压缩技术中各种稀疏矩阵存储格式的空间复杂度分析","authors":"Sumithra Sriram, B. J. Saira, Rajasekhara Babu","doi":"10.1109/ICECCE.2014.7086618","DOIUrl":null,"url":null,"abstract":"With the increase in the resolution of images, arises the need to compress these images effectively without much loss, for easy storage and transmission. Sparse matrices are matrices that have majority of their elements as zeroes, which brings in the possibility of storing just the non-zero elements in a space efficient manner using various formats. Images, which are essentially matrices, if somehow expressed as sparse matrices, can be similarly stored. The rectangular segmentation is a method that can be used to do so. In this paper, we analyze the space complexity of various storage formats for benchmark matrices and the suitability of these formats to compress images using rectangular segmentation method.","PeriodicalId":223751,"journal":{"name":"2014 International Conference on Electronics, Communication and Computational Engineering (ICECCE)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Space complexity analysis of various sparse matrix storage formats used in rectangular segmentation image compression technique\",\"authors\":\"Sumithra Sriram, B. J. Saira, Rajasekhara Babu\",\"doi\":\"10.1109/ICECCE.2014.7086618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increase in the resolution of images, arises the need to compress these images effectively without much loss, for easy storage and transmission. Sparse matrices are matrices that have majority of their elements as zeroes, which brings in the possibility of storing just the non-zero elements in a space efficient manner using various formats. Images, which are essentially matrices, if somehow expressed as sparse matrices, can be similarly stored. The rectangular segmentation is a method that can be used to do so. In this paper, we analyze the space complexity of various storage formats for benchmark matrices and the suitability of these formats to compress images using rectangular segmentation method.\",\"PeriodicalId\":223751,\"journal\":{\"name\":\"2014 International Conference on Electronics, Communication and Computational Engineering (ICECCE)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Electronics, Communication and Computational Engineering (ICECCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECCE.2014.7086618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Electronics, Communication and Computational Engineering (ICECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCE.2014.7086618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着图像分辨率的提高,为了便于存储和传输,需要对图像进行有效的压缩而不造成很大的损失。稀疏矩阵是大多数元素为零的矩阵,这使得使用各种格式以空间有效的方式存储非零元素成为可能。图像本质上是矩阵,如果以某种方式表示为稀疏矩阵,则可以类似地存储。矩形分割是一种可以用来做到这一点的方法。本文分析了基准矩阵的各种存储格式的空间复杂度,以及这些格式在矩形分割压缩图像中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Space complexity analysis of various sparse matrix storage formats used in rectangular segmentation image compression technique
With the increase in the resolution of images, arises the need to compress these images effectively without much loss, for easy storage and transmission. Sparse matrices are matrices that have majority of their elements as zeroes, which brings in the possibility of storing just the non-zero elements in a space efficient manner using various formats. Images, which are essentially matrices, if somehow expressed as sparse matrices, can be similarly stored. The rectangular segmentation is a method that can be used to do so. In this paper, we analyze the space complexity of various storage formats for benchmark matrices and the suitability of these formats to compress images using rectangular segmentation method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信