峰值神经网络重构优化及其在图像处理中的应用

S. Chaturvedi, A. Khurshid, S. Dorle
{"title":"峰值神经网络重构优化及其在图像处理中的应用","authors":"S. Chaturvedi, A. Khurshid, S. Dorle","doi":"10.1109/ICETET.2013.54","DOIUrl":null,"url":null,"abstract":"This paper depicts the restructuring of different models of third generation of Artificial neural network, that is, the spiking neural networks for image processing applications. The proposed work aims towards implementation of a novel algorithm using different models of Spiking Neural Networks which will improve upon the optimization results in the field of image processing. In this paper, we focus on various evaluation parameters like mean square error, mean absolute error peak signal to noise ratios as well as enhance the output using ANN as wellas Leaky Integrate and firing Model of Spiking Neural Networks.","PeriodicalId":440967,"journal":{"name":"2013 6th International Conference on Emerging Trends in Engineering and Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reconfiguration of Spiking Neural Network for Optimization with Applications to Image Processing\",\"authors\":\"S. Chaturvedi, A. Khurshid, S. Dorle\",\"doi\":\"10.1109/ICETET.2013.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper depicts the restructuring of different models of third generation of Artificial neural network, that is, the spiking neural networks for image processing applications. The proposed work aims towards implementation of a novel algorithm using different models of Spiking Neural Networks which will improve upon the optimization results in the field of image processing. In this paper, we focus on various evaluation parameters like mean square error, mean absolute error peak signal to noise ratios as well as enhance the output using ANN as wellas Leaky Integrate and firing Model of Spiking Neural Networks.\",\"PeriodicalId\":440967,\"journal\":{\"name\":\"2013 6th International Conference on Emerging Trends in Engineering and Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 6th International Conference on Emerging Trends in Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICETET.2013.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 6th International Conference on Emerging Trends in Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETET.2013.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文描述了第三代人工神经网络,即用于图像处理的峰值神经网络的不同模型的重构。提出的工作旨在实现一种新的算法,使用不同的峰值神经网络模型,这将改善图像处理领域的优化结果。在本文中,我们重点研究了各种评价参数,如均方误差,平均绝对误差峰值信噪比,并使用人工神经网络以及脉冲神经网络的漏积分和发射模型来增强输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconfiguration of Spiking Neural Network for Optimization with Applications to Image Processing
This paper depicts the restructuring of different models of third generation of Artificial neural network, that is, the spiking neural networks for image processing applications. The proposed work aims towards implementation of a novel algorithm using different models of Spiking Neural Networks which will improve upon the optimization results in the field of image processing. In this paper, we focus on various evaluation parameters like mean square error, mean absolute error peak signal to noise ratios as well as enhance the output using ANN as wellas Leaky Integrate and firing Model of Spiking Neural Networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信