Kow-Ming Chang, Chu-Feng Chen, C. Lai, C. Hsieh, Chin-Ning Wu, Yu-Bin Wang, Chung-Hsien Liu
{"title":"顶部表面钝化制备SGOI纳米线生物传感器的灵敏度增强","authors":"Kow-Ming Chang, Chu-Feng Chen, C. Lai, C. Hsieh, Chin-Ning Wu, Yu-Bin Wang, Chung-Hsien Liu","doi":"10.1109/NEMS.2012.6196842","DOIUrl":null,"url":null,"abstract":"Increasing the fraction of Ge in SiGe-on-Insulator (SGOI) using Ge condensation by oxidation significantly increases hole mobility. This effect can be exploited to improve the sensitivity of SGOI nanowire. However, our previous studies found that the sensitivity of an SGOI nanowire is degraded as the Ge fraction increases over 20%, because of the surface state of SiGe is unstable when the Ge fraction is high. In this work, a top surface passtivation SiO2 layer was deposited on an Si0.8Ge0.2 nanowire and successfully improve its sensitivity around 1.3 times that of the nanowire sample without top a passivation layer.","PeriodicalId":156839,"journal":{"name":"2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sensitivity enhancement in SGOI nanowire biosensor fabricated by top surface passivation\",\"authors\":\"Kow-Ming Chang, Chu-Feng Chen, C. Lai, C. Hsieh, Chin-Ning Wu, Yu-Bin Wang, Chung-Hsien Liu\",\"doi\":\"10.1109/NEMS.2012.6196842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasing the fraction of Ge in SiGe-on-Insulator (SGOI) using Ge condensation by oxidation significantly increases hole mobility. This effect can be exploited to improve the sensitivity of SGOI nanowire. However, our previous studies found that the sensitivity of an SGOI nanowire is degraded as the Ge fraction increases over 20%, because of the surface state of SiGe is unstable when the Ge fraction is high. In this work, a top surface passtivation SiO2 layer was deposited on an Si0.8Ge0.2 nanowire and successfully improve its sensitivity around 1.3 times that of the nanowire sample without top a passivation layer.\",\"PeriodicalId\":156839,\"journal\":{\"name\":\"2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2012.6196842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2012.6196842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sensitivity enhancement in SGOI nanowire biosensor fabricated by top surface passivation
Increasing the fraction of Ge in SiGe-on-Insulator (SGOI) using Ge condensation by oxidation significantly increases hole mobility. This effect can be exploited to improve the sensitivity of SGOI nanowire. However, our previous studies found that the sensitivity of an SGOI nanowire is degraded as the Ge fraction increases over 20%, because of the surface state of SiGe is unstable when the Ge fraction is high. In this work, a top surface passtivation SiO2 layer was deposited on an Si0.8Ge0.2 nanowire and successfully improve its sensitivity around 1.3 times that of the nanowire sample without top a passivation layer.