隐马尔可夫模型稀疏性的实现

M. Bicego, M. Cristani, Vittorio Murino
{"title":"隐马尔可夫模型稀疏性的实现","authors":"M. Bicego, M. Cristani, Vittorio Murino","doi":"10.1109/ICIAP.2007.118","DOIUrl":null,"url":null,"abstract":"In this paper, a novel learning algorithm for Hidden Markov Models (HMMs) has been devised. The key issue is the achievement of a sparse model, i.e., a model in which all irrelevant parameters are set exactly to zero. Alternatively to standard maximum likelihood estimation (Baum Welch training), in the proposed approach the parameters estimation problem is cast into a Bayesian framework, with the introduction of a negative Dirichlet prior, which strongly encourages sparseness of the model. A modified Expectation Maximization algorithm has been devised, able to determine a MAP (maximum a posteriori probability) estimate of HMM parameters in this Bayesian formulation. Theoretical considerations and experimental comparative evaluations on a 2D shape classification task contribute to validate the proposed technique.","PeriodicalId":118466,"journal":{"name":"14th International Conference on Image Analysis and Processing (ICIAP 2007)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Sparseness Achievement in Hidden Markov Models\",\"authors\":\"M. Bicego, M. Cristani, Vittorio Murino\",\"doi\":\"10.1109/ICIAP.2007.118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel learning algorithm for Hidden Markov Models (HMMs) has been devised. The key issue is the achievement of a sparse model, i.e., a model in which all irrelevant parameters are set exactly to zero. Alternatively to standard maximum likelihood estimation (Baum Welch training), in the proposed approach the parameters estimation problem is cast into a Bayesian framework, with the introduction of a negative Dirichlet prior, which strongly encourages sparseness of the model. A modified Expectation Maximization algorithm has been devised, able to determine a MAP (maximum a posteriori probability) estimate of HMM parameters in this Bayesian formulation. Theoretical considerations and experimental comparative evaluations on a 2D shape classification task contribute to validate the proposed technique.\",\"PeriodicalId\":118466,\"journal\":{\"name\":\"14th International Conference on Image Analysis and Processing (ICIAP 2007)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"14th International Conference on Image Analysis and Processing (ICIAP 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAP.2007.118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th International Conference on Image Analysis and Processing (ICIAP 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2007.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文提出了一种新的隐马尔可夫模型学习算法。关键问题是实现稀疏模型,即所有不相关参数都精确设置为零的模型。与标准最大似然估计(Baum Welch训练)不同,在提出的方法中,参数估计问题被投入到贝叶斯框架中,引入了负狄利克雷先验,这极大地鼓励了模型的稀疏性。设计了一种改进的期望最大化算法,能够确定该贝叶斯公式中HMM参数的MAP(最大后验概率)估计。对二维形状分类任务的理论考虑和实验比较评价有助于验证所提出的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparseness Achievement in Hidden Markov Models
In this paper, a novel learning algorithm for Hidden Markov Models (HMMs) has been devised. The key issue is the achievement of a sparse model, i.e., a model in which all irrelevant parameters are set exactly to zero. Alternatively to standard maximum likelihood estimation (Baum Welch training), in the proposed approach the parameters estimation problem is cast into a Bayesian framework, with the introduction of a negative Dirichlet prior, which strongly encourages sparseness of the model. A modified Expectation Maximization algorithm has been devised, able to determine a MAP (maximum a posteriori probability) estimate of HMM parameters in this Bayesian formulation. Theoretical considerations and experimental comparative evaluations on a 2D shape classification task contribute to validate the proposed technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信