用于检测旋转血泵吸入事件的高斯混合模型

A. Tzallas, G. Rigas, E. Karvounis, M. Tsipouras, Y. Goletsis, K. Zieliński, L. Fresiello, D. Fotiadis, M. Trivella
{"title":"用于检测旋转血泵吸入事件的高斯混合模型","authors":"A. Tzallas, G. Rigas, E. Karvounis, M. Tsipouras, Y. Goletsis, K. Zieliński, L. Fresiello, D. Fotiadis, M. Trivella","doi":"10.1109/BIBE.2012.6399661","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new suction detection approach based on online learning of a Gaussian Mixture Model (GMM) with constrained parameters to model the reduction in pump flow signals baseline during suction events. A novel three-step methodology is employed: i) signal windowing, ii) GMM based classification and iii) GMM parameter adaptation. More specifically, the first 5 second segment is used for the parameter initialization and the consequent 1 second windows are classified and used for model adaptation. The proposed approach has been tested in simulation (pump flow) signals and satisfactory results have been obtained.","PeriodicalId":330164,"journal":{"name":"2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Gaussian Mixture Model to detect suction events in rotary blood pumps\",\"authors\":\"A. Tzallas, G. Rigas, E. Karvounis, M. Tsipouras, Y. Goletsis, K. Zieliński, L. Fresiello, D. Fotiadis, M. Trivella\",\"doi\":\"10.1109/BIBE.2012.6399661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a new suction detection approach based on online learning of a Gaussian Mixture Model (GMM) with constrained parameters to model the reduction in pump flow signals baseline during suction events. A novel three-step methodology is employed: i) signal windowing, ii) GMM based classification and iii) GMM parameter adaptation. More specifically, the first 5 second segment is used for the parameter initialization and the consequent 1 second windows are classified and used for model adaptation. The proposed approach has been tested in simulation (pump flow) signals and satisfactory results have been obtained.\",\"PeriodicalId\":330164,\"journal\":{\"name\":\"2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2012.6399661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2012.6399661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们引入了一种新的吸力检测方法,该方法基于具有约束参数的高斯混合模型(GMM)的在线学习来模拟吸力事件期间泵流量信号基线的减少。采用了一种新的三步方法:1)信号加窗,2)基于GMM的分类,3)GMM参数自适应。更具体地说,前5秒段用于参数初始化,随后的1秒窗口被分类并用于模型自适应。该方法已在仿真(泵流量)信号中进行了测试,取得了满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Gaussian Mixture Model to detect suction events in rotary blood pumps
In this paper, we introduce a new suction detection approach based on online learning of a Gaussian Mixture Model (GMM) with constrained parameters to model the reduction in pump flow signals baseline during suction events. A novel three-step methodology is employed: i) signal windowing, ii) GMM based classification and iii) GMM parameter adaptation. More specifically, the first 5 second segment is used for the parameter initialization and the consequent 1 second windows are classified and used for model adaptation. The proposed approach has been tested in simulation (pump flow) signals and satisfactory results have been obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信