A. Tzallas, G. Rigas, E. Karvounis, M. Tsipouras, Y. Goletsis, K. Zieliński, L. Fresiello, D. Fotiadis, M. Trivella
{"title":"用于检测旋转血泵吸入事件的高斯混合模型","authors":"A. Tzallas, G. Rigas, E. Karvounis, M. Tsipouras, Y. Goletsis, K. Zieliński, L. Fresiello, D. Fotiadis, M. Trivella","doi":"10.1109/BIBE.2012.6399661","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new suction detection approach based on online learning of a Gaussian Mixture Model (GMM) with constrained parameters to model the reduction in pump flow signals baseline during suction events. A novel three-step methodology is employed: i) signal windowing, ii) GMM based classification and iii) GMM parameter adaptation. More specifically, the first 5 second segment is used for the parameter initialization and the consequent 1 second windows are classified and used for model adaptation. The proposed approach has been tested in simulation (pump flow) signals and satisfactory results have been obtained.","PeriodicalId":330164,"journal":{"name":"2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Gaussian Mixture Model to detect suction events in rotary blood pumps\",\"authors\":\"A. Tzallas, G. Rigas, E. Karvounis, M. Tsipouras, Y. Goletsis, K. Zieliński, L. Fresiello, D. Fotiadis, M. Trivella\",\"doi\":\"10.1109/BIBE.2012.6399661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a new suction detection approach based on online learning of a Gaussian Mixture Model (GMM) with constrained parameters to model the reduction in pump flow signals baseline during suction events. A novel three-step methodology is employed: i) signal windowing, ii) GMM based classification and iii) GMM parameter adaptation. More specifically, the first 5 second segment is used for the parameter initialization and the consequent 1 second windows are classified and used for model adaptation. The proposed approach has been tested in simulation (pump flow) signals and satisfactory results have been obtained.\",\"PeriodicalId\":330164,\"journal\":{\"name\":\"2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2012.6399661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2012.6399661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Gaussian Mixture Model to detect suction events in rotary blood pumps
In this paper, we introduce a new suction detection approach based on online learning of a Gaussian Mixture Model (GMM) with constrained parameters to model the reduction in pump flow signals baseline during suction events. A novel three-step methodology is employed: i) signal windowing, ii) GMM based classification and iii) GMM parameter adaptation. More specifically, the first 5 second segment is used for the parameter initialization and the consequent 1 second windows are classified and used for model adaptation. The proposed approach has been tested in simulation (pump flow) signals and satisfactory results have been obtained.