二人零和平均随机位置博弈的纯策略均衡

D. Lozovanu, Stefan Pickl
{"title":"二人零和平均随机位置博弈的纯策略均衡","authors":"D. Lozovanu, Stefan Pickl","doi":"10.56415/basm.y2022.i1.p75","DOIUrl":null,"url":null,"abstract":"The problem of the existence and determining equilibria in pure stationary strategies for a two-player zero-sum average stochastic positional game is considered. We show that for such a game there exists the value and players may achieve the value by applying pure stationary strategies of choosing the actions in their positions. Based on a constructive proof of these results we propose an algorithmic approach for determining the optimal pure stationary strategies of the players.","PeriodicalId":102242,"journal":{"name":"Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equilibria in Pure Strategies for a Two-Player Zero-Sum Average Stochastic Positional Game\",\"authors\":\"D. Lozovanu, Stefan Pickl\",\"doi\":\"10.56415/basm.y2022.i1.p75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of the existence and determining equilibria in pure stationary strategies for a two-player zero-sum average stochastic positional game is considered. We show that for such a game there exists the value and players may achieve the value by applying pure stationary strategies of choosing the actions in their positions. Based on a constructive proof of these results we propose an algorithmic approach for determining the optimal pure stationary strategies of the players.\",\"PeriodicalId\":102242,\"journal\":{\"name\":\"Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56415/basm.y2022.i1.p75\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56415/basm.y2022.i1.p75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类二人零和平均随机位置博弈的纯平稳策略平衡点的存在性和确定问题。我们证明,对于这样一个博弈,存在价值,玩家可以通过在自己的位置上选择行动的纯平稳策略来实现价值。基于对这些结果的建设性证明,我们提出了一种算法方法来确定参与者的最优纯平稳策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equilibria in Pure Strategies for a Two-Player Zero-Sum Average Stochastic Positional Game
The problem of the existence and determining equilibria in pure stationary strategies for a two-player zero-sum average stochastic positional game is considered. We show that for such a game there exists the value and players may achieve the value by applying pure stationary strategies of choosing the actions in their positions. Based on a constructive proof of these results we propose an algorithmic approach for determining the optimal pure stationary strategies of the players.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信