可解释人工智能的信息寻求对话:建模和分析

Ilia Stepin, Katarzyna Budzynska, Alejandro Catalá, Martin Pereira-Fariña, J. Alonso-Moral
{"title":"可解释人工智能的信息寻求对话:建模和分析","authors":"Ilia Stepin, Katarzyna Budzynska, Alejandro Catalá, Martin Pereira-Fariña, J. Alonso-Moral","doi":"10.3233/aac-220011","DOIUrl":null,"url":null,"abstract":"Explainable artificial intelligence has become a vitally important research field aiming, among other tasks, to justify predictions made by intelligent classifiers automatically learned from data. Importantly, efficiency of automated explanations may be undermined if the end user does not have sufficient domain knowledge or lacks information about the data used for training. To address the issue of effective explanation communication, we propose a novel information-seeking explanatory dialogue game following the most recent requirements to automatically generated explanations. Further, we generalise our dialogue model in form of an explanatory dialogue grammar which makes it applicable to interpretable rule-based classifiers that are enhanced with the capability to provide textual explanations. Finally, we carry out an exploratory user study to validate the corresponding dialogue protocol and analyse the experimental results using insights from process mining and argument analytics. A high number of requests for alternative explanations testifies the need for ensuring diversity in the context of automated explanations.","PeriodicalId":299930,"journal":{"name":"Argument & Computation","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Information-seeking dialogue for explainable artificial intelligence: Modelling and analytics\",\"authors\":\"Ilia Stepin, Katarzyna Budzynska, Alejandro Catalá, Martin Pereira-Fariña, J. Alonso-Moral\",\"doi\":\"10.3233/aac-220011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Explainable artificial intelligence has become a vitally important research field aiming, among other tasks, to justify predictions made by intelligent classifiers automatically learned from data. Importantly, efficiency of automated explanations may be undermined if the end user does not have sufficient domain knowledge or lacks information about the data used for training. To address the issue of effective explanation communication, we propose a novel information-seeking explanatory dialogue game following the most recent requirements to automatically generated explanations. Further, we generalise our dialogue model in form of an explanatory dialogue grammar which makes it applicable to interpretable rule-based classifiers that are enhanced with the capability to provide textual explanations. Finally, we carry out an exploratory user study to validate the corresponding dialogue protocol and analyse the experimental results using insights from process mining and argument analytics. A high number of requests for alternative explanations testifies the need for ensuring diversity in the context of automated explanations.\",\"PeriodicalId\":299930,\"journal\":{\"name\":\"Argument & Computation\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Argument & Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/aac-220011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Argument & Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/aac-220011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可解释的人工智能已经成为一个至关重要的研究领域,其目的之一是证明智能分类器从数据中自动学习的预测是正确的。重要的是,如果最终用户没有足够的领域知识或缺乏有关用于培训的数据的信息,则自动解释的效率可能会受到损害。为了解决有效的解释沟通问题,我们根据自动生成解释的最新要求,提出了一种新颖的信息寻求解释对话游戏。此外,我们以解释性对话语法的形式概括了我们的对话模型,这使得它适用于可解释的基于规则的分类器,这些分类器通过提供文本解释的能力得到了增强。最后,我们进行了探索性用户研究,以验证相应的对话协议,并利用过程挖掘和论证分析的见解分析实验结果。对替代解释的大量请求证明了在自动解释的背景下需要确保多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Information-seeking dialogue for explainable artificial intelligence: Modelling and analytics
Explainable artificial intelligence has become a vitally important research field aiming, among other tasks, to justify predictions made by intelligent classifiers automatically learned from data. Importantly, efficiency of automated explanations may be undermined if the end user does not have sufficient domain knowledge or lacks information about the data used for training. To address the issue of effective explanation communication, we propose a novel information-seeking explanatory dialogue game following the most recent requirements to automatically generated explanations. Further, we generalise our dialogue model in form of an explanatory dialogue grammar which makes it applicable to interpretable rule-based classifiers that are enhanced with the capability to provide textual explanations. Finally, we carry out an exploratory user study to validate the corresponding dialogue protocol and analyse the experimental results using insights from process mining and argument analytics. A high number of requests for alternative explanations testifies the need for ensuring diversity in the context of automated explanations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信