Naufal Suryanto, Hyoeun Kang, Yongsu Kim, Youngyeo Yun, Harashta Tatimma Larasati, Howon Kim
{"title":"摘要:一种基于多群粒子群优化的分布式黑盒对抗攻击","authors":"Naufal Suryanto, Hyoeun Kang, Yongsu Kim, Youngyeo Yun, Harashta Tatimma Larasati, Howon Kim","doi":"10.1145/3411495.3421368","DOIUrl":null,"url":null,"abstract":"Current adversarial attack methods in black-box settings mainly: (1) rely on transferability approach which requires a substitute model, hence inefficient; or (2) employ a large number of queries for crafting their adversarial examples, hence very likely to be detected and responded by the target system (e.g., AI service provider) due to its high traffic volume. In this paper, we present a black-box adversarial attack based on Multi-Group Particle Swarm Optimization with Random Redistribution (MGRR-PSO) which yields a very high success rate while maintaining a low number of query by launching the attack in a distributed manner. Attacks are executed from multiple nodes, disseminating queries among the nodes, hence reducing the possibility of being recognized by the target system while also increasing scalability. Furthermore, we propose to efficiently remove excessive perturbation (i.e., perturbation pruning) by utilizing again the MGRR-PSO. Overall, we perform five different experiments: comparing our attack's performance with existing algorithms, testing in high-dimensional space using ImageNet dataset, examining our hyperparameters, and testing on real digital attack to Google Cloud Vision. Our attack proves to obtain a 100% success rate for both untargeted and targeted attack on MNIST and CIFAR-10 datasets and able to successfully fool Google Cloud Vision as a proof of the real digital attack with relatively low queries.","PeriodicalId":125943,"journal":{"name":"Proceedings of the 2020 ACM SIGSAC Conference on Cloud Computing Security Workshop","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ABSTRACT: Together We Can Fool Them: A Distributed Black-Box Adversarial Attack Based on Multi-Group Particle Swarm Optimization\",\"authors\":\"Naufal Suryanto, Hyoeun Kang, Yongsu Kim, Youngyeo Yun, Harashta Tatimma Larasati, Howon Kim\",\"doi\":\"10.1145/3411495.3421368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current adversarial attack methods in black-box settings mainly: (1) rely on transferability approach which requires a substitute model, hence inefficient; or (2) employ a large number of queries for crafting their adversarial examples, hence very likely to be detected and responded by the target system (e.g., AI service provider) due to its high traffic volume. In this paper, we present a black-box adversarial attack based on Multi-Group Particle Swarm Optimization with Random Redistribution (MGRR-PSO) which yields a very high success rate while maintaining a low number of query by launching the attack in a distributed manner. Attacks are executed from multiple nodes, disseminating queries among the nodes, hence reducing the possibility of being recognized by the target system while also increasing scalability. Furthermore, we propose to efficiently remove excessive perturbation (i.e., perturbation pruning) by utilizing again the MGRR-PSO. Overall, we perform five different experiments: comparing our attack's performance with existing algorithms, testing in high-dimensional space using ImageNet dataset, examining our hyperparameters, and testing on real digital attack to Google Cloud Vision. Our attack proves to obtain a 100% success rate for both untargeted and targeted attack on MNIST and CIFAR-10 datasets and able to successfully fool Google Cloud Vision as a proof of the real digital attack with relatively low queries.\",\"PeriodicalId\":125943,\"journal\":{\"name\":\"Proceedings of the 2020 ACM SIGSAC Conference on Cloud Computing Security Workshop\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 ACM SIGSAC Conference on Cloud Computing Security Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3411495.3421368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM SIGSAC Conference on Cloud Computing Security Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3411495.3421368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ABSTRACT: Together We Can Fool Them: A Distributed Black-Box Adversarial Attack Based on Multi-Group Particle Swarm Optimization
Current adversarial attack methods in black-box settings mainly: (1) rely on transferability approach which requires a substitute model, hence inefficient; or (2) employ a large number of queries for crafting their adversarial examples, hence very likely to be detected and responded by the target system (e.g., AI service provider) due to its high traffic volume. In this paper, we present a black-box adversarial attack based on Multi-Group Particle Swarm Optimization with Random Redistribution (MGRR-PSO) which yields a very high success rate while maintaining a low number of query by launching the attack in a distributed manner. Attacks are executed from multiple nodes, disseminating queries among the nodes, hence reducing the possibility of being recognized by the target system while also increasing scalability. Furthermore, we propose to efficiently remove excessive perturbation (i.e., perturbation pruning) by utilizing again the MGRR-PSO. Overall, we perform five different experiments: comparing our attack's performance with existing algorithms, testing in high-dimensional space using ImageNet dataset, examining our hyperparameters, and testing on real digital attack to Google Cloud Vision. Our attack proves to obtain a 100% success rate for both untargeted and targeted attack on MNIST and CIFAR-10 datasets and able to successfully fool Google Cloud Vision as a proof of the real digital attack with relatively low queries.