基于脉冲时间相关可塑性的脉冲神经网络调制识别研究

E. Knoblock, H. Bahrami
{"title":"基于脉冲时间相关可塑性的脉冲神经网络调制识别研究","authors":"E. Knoblock, H. Bahrami","doi":"10.1109/CCAAW.2019.8904911","DOIUrl":null,"url":null,"abstract":"Spiking neural networks (SNNs) operating on neuromorphic hardware can enable cognitive functionality with relatively low power consumption as compared to other artificial neural network implementations, making it ideally suited for resource-constrained space platforms such as CubeSats. The objective of this study is to investigate the implementation of a modulation recognition capability using SNNs, which may eventually be applied to neuromorphic hardware for implementation. This preliminary analysis uses a software simulation approach with an unsupervised learning algorithm based on spike-timing-dependent plasticity for classification of digital modulation constellation patterns. This modulation recognition capability can provide enhanced situational awareness for a space platform and facilitate additional high-level cognitive functionality that can be investigated in future studies.","PeriodicalId":196580,"journal":{"name":"2019 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Investigation of Spiking Neural Networks for Modulation Recognition using Spike-Timing-Dependent Plasticity\",\"authors\":\"E. Knoblock, H. Bahrami\",\"doi\":\"10.1109/CCAAW.2019.8904911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spiking neural networks (SNNs) operating on neuromorphic hardware can enable cognitive functionality with relatively low power consumption as compared to other artificial neural network implementations, making it ideally suited for resource-constrained space platforms such as CubeSats. The objective of this study is to investigate the implementation of a modulation recognition capability using SNNs, which may eventually be applied to neuromorphic hardware for implementation. This preliminary analysis uses a software simulation approach with an unsupervised learning algorithm based on spike-timing-dependent plasticity for classification of digital modulation constellation patterns. This modulation recognition capability can provide enhanced situational awareness for a space platform and facilitate additional high-level cognitive functionality that can be investigated in future studies.\",\"PeriodicalId\":196580,\"journal\":{\"name\":\"2019 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCAAW.2019.8904911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCAAW.2019.8904911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

与其他人工神经网络实现相比,在神经形态硬件上运行的峰值神经网络(snn)可以以相对较低的功耗实现认知功能,使其非常适合立方体卫星等资源受限的空间平台。本研究的目的是研究使用snn实现调制识别能力,这可能最终应用于神经形态硬件的实现。本初步分析使用软件仿真方法和基于峰值时间依赖可塑性的无监督学习算法对数字调制星座模式进行分类。这种调制识别能力可以为空间平台提供增强的态势感知能力,并促进未来研究中可以研究的其他高级认知功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of Spiking Neural Networks for Modulation Recognition using Spike-Timing-Dependent Plasticity
Spiking neural networks (SNNs) operating on neuromorphic hardware can enable cognitive functionality with relatively low power consumption as compared to other artificial neural network implementations, making it ideally suited for resource-constrained space platforms such as CubeSats. The objective of this study is to investigate the implementation of a modulation recognition capability using SNNs, which may eventually be applied to neuromorphic hardware for implementation. This preliminary analysis uses a software simulation approach with an unsupervised learning algorithm based on spike-timing-dependent plasticity for classification of digital modulation constellation patterns. This modulation recognition capability can provide enhanced situational awareness for a space platform and facilitate additional high-level cognitive functionality that can be investigated in future studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信