核心开放存取学术文献数据集中文献文本相似度评估方法研究

Ivan Kovačič, David Bajs, M. Ojsteršek
{"title":"核心开放存取学术文献数据集中文献文本相似度评估方法研究","authors":"Ivan Kovačič, David Bajs, M. Ojsteršek","doi":"10.18690/978-961-286-516-0.12","DOIUrl":null,"url":null,"abstract":"This paper describes the methodology of data preparation and analysis of the text similarity required for plagiarism detection on the CORE data set. Firstly, we used the CrossREF API and Microsoft Academic Graph data set for metadata enrichment and elimination of duplicates of doc-uments from the CORE 2018 data set. In the second step, we used 4-gram sequences of words from every document and transformed them into SHA-256 hash values. Features retrieved using hashing algorithm are compared, and the result is a list of documents and the percentages of cov-erage between pairs of documents features. In the third step, called pairwise feature-based ex-haustive analysis, pairs of documents are checked using the longest common substring.","PeriodicalId":282591,"journal":{"name":"Proceedings of the 2021 7th Student Computer Science Research Conference (StuCoSReC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methodology for the Assessment of the Text Similarity of Documents in the CORE Open Access Data Set of Scholarly Documents\",\"authors\":\"Ivan Kovačič, David Bajs, M. Ojsteršek\",\"doi\":\"10.18690/978-961-286-516-0.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the methodology of data preparation and analysis of the text similarity required for plagiarism detection on the CORE data set. Firstly, we used the CrossREF API and Microsoft Academic Graph data set for metadata enrichment and elimination of duplicates of doc-uments from the CORE 2018 data set. In the second step, we used 4-gram sequences of words from every document and transformed them into SHA-256 hash values. Features retrieved using hashing algorithm are compared, and the result is a list of documents and the percentages of cov-erage between pairs of documents features. In the third step, called pairwise feature-based ex-haustive analysis, pairs of documents are checked using the longest common substring.\",\"PeriodicalId\":282591,\"journal\":{\"name\":\"Proceedings of the 2021 7th Student Computer Science Research Conference (StuCoSReC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 7th Student Computer Science Research Conference (StuCoSReC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18690/978-961-286-516-0.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 7th Student Computer Science Research Conference (StuCoSReC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18690/978-961-286-516-0.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了在CORE数据集上进行抄袭检测所需的数据准备和文本相似度分析的方法。首先,我们使用CrossREF API和Microsoft Academic Graph数据集对CORE 2018数据集的元数据进行丰富和消除重复的文档。在第二步中,我们使用来自每个文档的4克单词序列,并将它们转换为SHA-256哈希值。比较使用散列算法检索的特征,结果是文档列表和文档特征对之间的覆盖率百分比。在第三步中,称为基于成对特征的详尽分析,使用最长的公共子字符串检查文档对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Methodology for the Assessment of the Text Similarity of Documents in the CORE Open Access Data Set of Scholarly Documents
This paper describes the methodology of data preparation and analysis of the text similarity required for plagiarism detection on the CORE data set. Firstly, we used the CrossREF API and Microsoft Academic Graph data set for metadata enrichment and elimination of duplicates of doc-uments from the CORE 2018 data set. In the second step, we used 4-gram sequences of words from every document and transformed them into SHA-256 hash values. Features retrieved using hashing algorithm are compared, and the result is a list of documents and the percentages of cov-erage between pairs of documents features. In the third step, called pairwise feature-based ex-haustive analysis, pairs of documents are checked using the longest common substring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信