Yannan Liu, Yabin Lai, Kaizhi Wei, Liang Gu, Zhengzheng Yan
{"title":"NLabel:大规模弱标记恶意软件的精确家族聚类框架","authors":"Yannan Liu, Yabin Lai, Kaizhi Wei, Liang Gu, Zhengzheng Yan","doi":"10.1109/TrustCom50675.2020.00039","DOIUrl":null,"url":null,"abstract":"Automatic family labeling for malware is in demand, especially for today's malware scale. While business Anti-Virus engines provide an efficient family labeling method, the raw labels tend to be inconsistent. Prior works mitigate such inconsistency by detecting the aliases and majority voting to obtain the final family label. However, these methods solve the inconsistency in a coarse-grained and vulnerable manner, and the obtained family label is inaccurate sometimes. In this work, we propose NLabel to conduct familial clustering based on AV engines' raw labels. On the one hand, NLabel uses word embedding techniques to capture the similarity among raw labels, transform the inconsistent labels of the same family into similar semantic representations, and mitigate the inconsistency at finer granularity. On the other hand, we propose a hierarchical family clustering method to boost the performance of large-scale data sets. Experimental results show that our method outperforms the SOTA.","PeriodicalId":221956,"journal":{"name":"2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NLabel: An Accurate Familial Clustering Framework for Large-scale Weakly-labeled Malware\",\"authors\":\"Yannan Liu, Yabin Lai, Kaizhi Wei, Liang Gu, Zhengzheng Yan\",\"doi\":\"10.1109/TrustCom50675.2020.00039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic family labeling for malware is in demand, especially for today's malware scale. While business Anti-Virus engines provide an efficient family labeling method, the raw labels tend to be inconsistent. Prior works mitigate such inconsistency by detecting the aliases and majority voting to obtain the final family label. However, these methods solve the inconsistency in a coarse-grained and vulnerable manner, and the obtained family label is inaccurate sometimes. In this work, we propose NLabel to conduct familial clustering based on AV engines' raw labels. On the one hand, NLabel uses word embedding techniques to capture the similarity among raw labels, transform the inconsistent labels of the same family into similar semantic representations, and mitigate the inconsistency at finer granularity. On the other hand, we propose a hierarchical family clustering method to boost the performance of large-scale data sets. Experimental results show that our method outperforms the SOTA.\",\"PeriodicalId\":221956,\"journal\":{\"name\":\"2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TrustCom50675.2020.00039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TrustCom50675.2020.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
NLabel: An Accurate Familial Clustering Framework for Large-scale Weakly-labeled Malware
Automatic family labeling for malware is in demand, especially for today's malware scale. While business Anti-Virus engines provide an efficient family labeling method, the raw labels tend to be inconsistent. Prior works mitigate such inconsistency by detecting the aliases and majority voting to obtain the final family label. However, these methods solve the inconsistency in a coarse-grained and vulnerable manner, and the obtained family label is inaccurate sometimes. In this work, we propose NLabel to conduct familial clustering based on AV engines' raw labels. On the one hand, NLabel uses word embedding techniques to capture the similarity among raw labels, transform the inconsistent labels of the same family into similar semantic representations, and mitigate the inconsistency at finer granularity. On the other hand, we propose a hierarchical family clustering method to boost the performance of large-scale data sets. Experimental results show that our method outperforms the SOTA.