{"title":"基于Linux的服务的扩展和自修复——一种利用并行性的新型分布式计算模型","authors":"G. Morana, Rao V. Mikkilineni","doi":"10.1109/WETICE.2011.18","DOIUrl":null,"url":null,"abstract":"This paper describes a prototype implementing a high degree of fault tolerance, reliability and resilience in distributed software systems. The prototype incorporates fault, configuration, accounting, performance and security (FCAPS) management using a signaling network overlay and allows the dynamic control of a set of nodes called Distributed Intelligent Managed Elements (DIMEs) in a network. Each DIME is a computing entity (implemented in Linux and in the future will be ported to Windows) endowed with self-management and signaling capabilities to collaborate with other DIMEs in a network. The prototype incorporates a new computing model proposed by Mikkilineni in 2010, with signaling network overlay over the computing network and allows parallelism in resource monitoring, analysis and reconfiguration. A workflow is implemented as a set of tasks, arranged or organized in a directed acyclic graph (DAG) and executed by a managed network of DIMEs. Distributed DIME networks provide a network computing model to create distributed computing clouds and execute distributed managed workflows with high degree of agility, availability, reliability, performance and security.","PeriodicalId":274311,"journal":{"name":"2011 IEEE 20th International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Scaling and Self-repair of Linux Based Services Using a Novel Distributed Computing Model Exploiting Parallelism\",\"authors\":\"G. Morana, Rao V. Mikkilineni\",\"doi\":\"10.1109/WETICE.2011.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a prototype implementing a high degree of fault tolerance, reliability and resilience in distributed software systems. The prototype incorporates fault, configuration, accounting, performance and security (FCAPS) management using a signaling network overlay and allows the dynamic control of a set of nodes called Distributed Intelligent Managed Elements (DIMEs) in a network. Each DIME is a computing entity (implemented in Linux and in the future will be ported to Windows) endowed with self-management and signaling capabilities to collaborate with other DIMEs in a network. The prototype incorporates a new computing model proposed by Mikkilineni in 2010, with signaling network overlay over the computing network and allows parallelism in resource monitoring, analysis and reconfiguration. A workflow is implemented as a set of tasks, arranged or organized in a directed acyclic graph (DAG) and executed by a managed network of DIMEs. Distributed DIME networks provide a network computing model to create distributed computing clouds and execute distributed managed workflows with high degree of agility, availability, reliability, performance and security.\",\"PeriodicalId\":274311,\"journal\":{\"name\":\"2011 IEEE 20th International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 20th International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WETICE.2011.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 20th International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WETICE.2011.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scaling and Self-repair of Linux Based Services Using a Novel Distributed Computing Model Exploiting Parallelism
This paper describes a prototype implementing a high degree of fault tolerance, reliability and resilience in distributed software systems. The prototype incorporates fault, configuration, accounting, performance and security (FCAPS) management using a signaling network overlay and allows the dynamic control of a set of nodes called Distributed Intelligent Managed Elements (DIMEs) in a network. Each DIME is a computing entity (implemented in Linux and in the future will be ported to Windows) endowed with self-management and signaling capabilities to collaborate with other DIMEs in a network. The prototype incorporates a new computing model proposed by Mikkilineni in 2010, with signaling network overlay over the computing network and allows parallelism in resource monitoring, analysis and reconfiguration. A workflow is implemented as a set of tasks, arranged or organized in a directed acyclic graph (DAG) and executed by a managed network of DIMEs. Distributed DIME networks provide a network computing model to create distributed computing clouds and execute distributed managed workflows with high degree of agility, availability, reliability, performance and security.