基于模糊规则的粒子群算法和遗传算法的混合进化神经网络优化

F. Valdez, P. Melin
{"title":"基于模糊规则的粒子群算法和遗传算法的混合进化神经网络优化","authors":"F. Valdez, P. Melin","doi":"10.1109/NAFIPS.2008.4531335","DOIUrl":null,"url":null,"abstract":"We describe in this paper a new hybrid evolutionary method that combines PSO and GA with fuzzy rules for the optimization of the topology of a Neural Network (NN) for the problem of face recognition. In this case, we used the Yale face database for training the Neural Network. The new evolutionary method combines the advantages of PSO and GA to give us an improved PSO+GA hybrid method. Fuzzy Logic is used to combine the results of the PSO and GA in the best way possible.","PeriodicalId":430770,"journal":{"name":"NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Neural Network optimization with a hybrid evolutionary method that combines Particle Swarm and Genetic Algorithms with fuzzy rules\",\"authors\":\"F. Valdez, P. Melin\",\"doi\":\"10.1109/NAFIPS.2008.4531335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe in this paper a new hybrid evolutionary method that combines PSO and GA with fuzzy rules for the optimization of the topology of a Neural Network (NN) for the problem of face recognition. In this case, we used the Yale face database for training the Neural Network. The new evolutionary method combines the advantages of PSO and GA to give us an improved PSO+GA hybrid method. Fuzzy Logic is used to combine the results of the PSO and GA in the best way possible.\",\"PeriodicalId\":430770,\"journal\":{\"name\":\"NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.2008.4531335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2008.4531335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种新的混合进化方法,将粒子群算法和遗传算法结合模糊规则,用于人脸识别问题的神经网络拓扑优化。在这个例子中,我们使用耶鲁人脸数据库来训练神经网络。新的进化方法结合了粒子群算法和遗传算法的优点,给出了一种改进的粒子群算法+遗传算法混合方法。模糊逻辑用于将粒子群算法和遗传算法的结果以最好的方式结合起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Network optimization with a hybrid evolutionary method that combines Particle Swarm and Genetic Algorithms with fuzzy rules
We describe in this paper a new hybrid evolutionary method that combines PSO and GA with fuzzy rules for the optimization of the topology of a Neural Network (NN) for the problem of face recognition. In this case, we used the Yale face database for training the Neural Network. The new evolutionary method combines the advantages of PSO and GA to give us an improved PSO+GA hybrid method. Fuzzy Logic is used to combine the results of the PSO and GA in the best way possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信