一种语义信息检索方法

Huiying Li
{"title":"一种语义信息检索方法","authors":"Huiying Li","doi":"10.1109/CSC.2012.32","DOIUrl":null,"url":null,"abstract":"The growth of the Semantic Web has seen a rapid increase in the amount of Resource Description Framework (RDF) data. Meanwhile, the demand for access to RDF data without detailed knowledge of RDF query languages is increasing. In this study, an approach enabling keyword-based semantic information query over RDF data is proposed. The approach sets up a keyword-inverted index and a relation index based on the r-radius+ graph and searches the connecting nodes to provide an answer for keyword query. Moreover, the approach uses an improved scoring function based on textual relevancy and relation popularity and supports top-k queries. Experimental results show that the proposed approach can achieve good query performance.","PeriodicalId":183800,"journal":{"name":"2012 International Conference on Cloud and Service Computing","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Approach to Semantic Information Retrieval\",\"authors\":\"Huiying Li\",\"doi\":\"10.1109/CSC.2012.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growth of the Semantic Web has seen a rapid increase in the amount of Resource Description Framework (RDF) data. Meanwhile, the demand for access to RDF data without detailed knowledge of RDF query languages is increasing. In this study, an approach enabling keyword-based semantic information query over RDF data is proposed. The approach sets up a keyword-inverted index and a relation index based on the r-radius+ graph and searches the connecting nodes to provide an answer for keyword query. Moreover, the approach uses an improved scoring function based on textual relevancy and relation popularity and supports top-k queries. Experimental results show that the proposed approach can achieve good query performance.\",\"PeriodicalId\":183800,\"journal\":{\"name\":\"2012 International Conference on Cloud and Service Computing\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Cloud and Service Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSC.2012.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Cloud and Service Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSC.2012.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着语义网的发展,资源描述框架(RDF)数据的数量迅速增加。与此同时,在不详细了解RDF查询语言的情况下访问RDF数据的需求正在增加。本文提出了一种基于关键字的RDF数据语义信息查询方法。该方法通过建立关键字倒排索引和基于r-半径+图的关系索引,对连接节点进行搜索,为关键字查询提供答案。此外,该方法使用改进的基于文本相关性和关系流行度的评分函数,并支持top-k查询。实验结果表明,该方法能够取得较好的查询性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Approach to Semantic Information Retrieval
The growth of the Semantic Web has seen a rapid increase in the amount of Resource Description Framework (RDF) data. Meanwhile, the demand for access to RDF data without detailed knowledge of RDF query languages is increasing. In this study, an approach enabling keyword-based semantic information query over RDF data is proposed. The approach sets up a keyword-inverted index and a relation index based on the r-radius+ graph and searches the connecting nodes to provide an answer for keyword query. Moreover, the approach uses an improved scoring function based on textual relevancy and relation popularity and supports top-k queries. Experimental results show that the proposed approach can achieve good query performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信