马尔可夫再生随机Petri网的灵敏度分析

V. Mainkar, Hoon Choi, Kishor S. Trivedi
{"title":"马尔可夫再生随机Petri网的灵敏度分析","authors":"V. Mainkar, Hoon Choi, Kishor S. Trivedi","doi":"10.1109/PNPM.1993.393452","DOIUrl":null,"url":null,"abstract":"Sensitivity analysis, i.e., the analysis of the effect of small variations in system parameters on the output measures, can be studied by computing the derivatives of the output measures with respect to the parameter. An algorithm for parametric sensitivity analysis of Markov regenerative stochastic Petri nets (MRSPN) is presented. MRSPNs are a true generalization of stochastic Petri nets, in that they allow for transitions to have generally distributed firing times (under certain conditions). The expressions for the steady state probabilities of MRSPNs were developed by H. Choi et al. (1993). The authors extend the steady state analysis and present equations for sensitivity of the steady state probabilities with respect to an arbitrary system parameter. Sensitivity functions of the performance measures can accordingly be expressed in terms of the sensitivity functions of the steady state probabilities. The authors present an application of our algorithm by finding an optimizing parameter for a vacation queue.<<ETX>>","PeriodicalId":404832,"journal":{"name":"Proceedings of 5th International Workshop on Petri Nets and Performance Models","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Sensitivity analysis of Markov regenerative stochastic Petri nets\",\"authors\":\"V. Mainkar, Hoon Choi, Kishor S. Trivedi\",\"doi\":\"10.1109/PNPM.1993.393452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensitivity analysis, i.e., the analysis of the effect of small variations in system parameters on the output measures, can be studied by computing the derivatives of the output measures with respect to the parameter. An algorithm for parametric sensitivity analysis of Markov regenerative stochastic Petri nets (MRSPN) is presented. MRSPNs are a true generalization of stochastic Petri nets, in that they allow for transitions to have generally distributed firing times (under certain conditions). The expressions for the steady state probabilities of MRSPNs were developed by H. Choi et al. (1993). The authors extend the steady state analysis and present equations for sensitivity of the steady state probabilities with respect to an arbitrary system parameter. Sensitivity functions of the performance measures can accordingly be expressed in terms of the sensitivity functions of the steady state probabilities. The authors present an application of our algorithm by finding an optimizing parameter for a vacation queue.<<ETX>>\",\"PeriodicalId\":404832,\"journal\":{\"name\":\"Proceedings of 5th International Workshop on Petri Nets and Performance Models\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 5th International Workshop on Petri Nets and Performance Models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PNPM.1993.393452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 5th International Workshop on Petri Nets and Performance Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PNPM.1993.393452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

灵敏度分析,即分析系统参数的微小变化对输出测度的影响,可以通过计算输出测度对参数的导数来研究。提出了一种马尔可夫再生随机Petri网(MRSPN)的参数敏感性分析算法。mrspn是随机Petri网的真正推广,因为它们允许转换具有普遍分布的触发时间(在某些条件下)。mrspn稳态概率的表达式由H. Choi等人(1993)提出。作者推广了稳态分析,给出了稳态概率对任意系统参数的灵敏度方程。性能测度的灵敏度函数可以用稳态概率的灵敏度函数来表示。作者通过寻找休假队列的优化参数,给出了该算法的一个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensitivity analysis of Markov regenerative stochastic Petri nets
Sensitivity analysis, i.e., the analysis of the effect of small variations in system parameters on the output measures, can be studied by computing the derivatives of the output measures with respect to the parameter. An algorithm for parametric sensitivity analysis of Markov regenerative stochastic Petri nets (MRSPN) is presented. MRSPNs are a true generalization of stochastic Petri nets, in that they allow for transitions to have generally distributed firing times (under certain conditions). The expressions for the steady state probabilities of MRSPNs were developed by H. Choi et al. (1993). The authors extend the steady state analysis and present equations for sensitivity of the steady state probabilities with respect to an arbitrary system parameter. Sensitivity functions of the performance measures can accordingly be expressed in terms of the sensitivity functions of the steady state probabilities. The authors present an application of our algorithm by finding an optimizing parameter for a vacation queue.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信