Giuliana Emmolo, Daryl Ma, Danilo Demarchi, P. Georgiou
{"title":"用于低功率数据传输的多输入单输出混频通信技术","authors":"Giuliana Emmolo, Daryl Ma, Danilo Demarchi, P. Georgiou","doi":"10.1109/MeMeA52024.2021.9478708","DOIUrl":null,"url":null,"abstract":"The paradigm of Internet of Things (IoT) has revolutionised the field of human health monitoring. Recent research works outline an ever growing interest in the development of miniaturized fully functioning devices, where optimization strategies in terms of size, power consumption and data transmission capabilities represents the main requirements as well as the biggest challenges at the design stage. In this paper we provide an analysis into a data transmission method based on digital mixing for combining multiple inputs channels into a single output. We first demonstrate that the sources of the error generated in the output stream are the frequency ratio of the input signals and their relative phase shift. With the results from the simulations, we demonstrate that the error performed on the lower frequency information in the mixed signal has a trend which is exponentially decreasing with the input frequency ratio. Additionally, we prove that the relative phase shift of the input signals may significantly impact the error towards lower input frequency ratios. Afterwards, we analyze the system power consumption, and we demonstrate that the power trend is linear with the input frequency ratio. Lastly, we discuss the error performance versus power trade-off of the system, which is helpful for the design of the input frequency levels for a specific target application.","PeriodicalId":429222,"journal":{"name":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple Input, Single Output Frequency Mixing Communication Technique for Low Power Data Transmission\",\"authors\":\"Giuliana Emmolo, Daryl Ma, Danilo Demarchi, P. Georgiou\",\"doi\":\"10.1109/MeMeA52024.2021.9478708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paradigm of Internet of Things (IoT) has revolutionised the field of human health monitoring. Recent research works outline an ever growing interest in the development of miniaturized fully functioning devices, where optimization strategies in terms of size, power consumption and data transmission capabilities represents the main requirements as well as the biggest challenges at the design stage. In this paper we provide an analysis into a data transmission method based on digital mixing for combining multiple inputs channels into a single output. We first demonstrate that the sources of the error generated in the output stream are the frequency ratio of the input signals and their relative phase shift. With the results from the simulations, we demonstrate that the error performed on the lower frequency information in the mixed signal has a trend which is exponentially decreasing with the input frequency ratio. Additionally, we prove that the relative phase shift of the input signals may significantly impact the error towards lower input frequency ratios. Afterwards, we analyze the system power consumption, and we demonstrate that the power trend is linear with the input frequency ratio. Lastly, we discuss the error performance versus power trade-off of the system, which is helpful for the design of the input frequency levels for a specific target application.\",\"PeriodicalId\":429222,\"journal\":{\"name\":\"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA52024.2021.9478708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA52024.2021.9478708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiple Input, Single Output Frequency Mixing Communication Technique for Low Power Data Transmission
The paradigm of Internet of Things (IoT) has revolutionised the field of human health monitoring. Recent research works outline an ever growing interest in the development of miniaturized fully functioning devices, where optimization strategies in terms of size, power consumption and data transmission capabilities represents the main requirements as well as the biggest challenges at the design stage. In this paper we provide an analysis into a data transmission method based on digital mixing for combining multiple inputs channels into a single output. We first demonstrate that the sources of the error generated in the output stream are the frequency ratio of the input signals and their relative phase shift. With the results from the simulations, we demonstrate that the error performed on the lower frequency information in the mixed signal has a trend which is exponentially decreasing with the input frequency ratio. Additionally, we prove that the relative phase shift of the input signals may significantly impact the error towards lower input frequency ratios. Afterwards, we analyze the system power consumption, and we demonstrate that the power trend is linear with the input frequency ratio. Lastly, we discuss the error performance versus power trade-off of the system, which is helpful for the design of the input frequency levels for a specific target application.