基于多模态卷积神经网络的用户生成视频中的乐器识别

Olga Slizovskaia, E. Gómez, G. Haro
{"title":"基于多模态卷积神经网络的用户生成视频中的乐器识别","authors":"Olga Slizovskaia, E. Gómez, G. Haro","doi":"10.1145/3078971.3079002","DOIUrl":null,"url":null,"abstract":"This paper presents a method for recognizing musical instruments in user-generated videos. Musical instrument recognition from music signals is a well-known task in the music information retrieval (MIR) field, where current approaches rely on the analysis of the good-quality audio material. This work addresses a real-world scenario with several research challenges, i.e. the analysis of user-generated videos that are varied in terms of recording conditions and quality and may contain multiple instruments sounding simultaneously and background noise. Our approach does not only focus on the analysis of audio information, but we exploit the multimodal information embedded in the audio and visual domains. In order to do so, we develop a Convolutional Neural Network (CNN) architecture which combines learned representations from both modalities at a late fusion stage. Our approach is trained and evaluated on two large-scale video datasets: YouTube-8M and FCVID. The proposed architectures demonstrate state-of-the-art results in audio and video object recognition, provide additional robustness to missing modalities, and remains computationally cheap to train.","PeriodicalId":403556,"journal":{"name":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Musical Instrument Recognition in User-generated Videos using a Multimodal Convolutional Neural Network Architecture\",\"authors\":\"Olga Slizovskaia, E. Gómez, G. Haro\",\"doi\":\"10.1145/3078971.3079002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for recognizing musical instruments in user-generated videos. Musical instrument recognition from music signals is a well-known task in the music information retrieval (MIR) field, where current approaches rely on the analysis of the good-quality audio material. This work addresses a real-world scenario with several research challenges, i.e. the analysis of user-generated videos that are varied in terms of recording conditions and quality and may contain multiple instruments sounding simultaneously and background noise. Our approach does not only focus on the analysis of audio information, but we exploit the multimodal information embedded in the audio and visual domains. In order to do so, we develop a Convolutional Neural Network (CNN) architecture which combines learned representations from both modalities at a late fusion stage. Our approach is trained and evaluated on two large-scale video datasets: YouTube-8M and FCVID. The proposed architectures demonstrate state-of-the-art results in audio and video object recognition, provide additional robustness to missing modalities, and remains computationally cheap to train.\",\"PeriodicalId\":403556,\"journal\":{\"name\":\"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3078971.3079002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078971.3079002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文提出了一种在用户生成视频中识别乐器的方法。从音乐信号中识别乐器是音乐信息检索(MIR)领域中一个众所周知的任务,目前的方法依赖于对高质量音频材料的分析。这项工作解决了一个具有几个研究挑战的现实世界场景,即分析用户生成的视频,这些视频在记录条件和质量方面各不相同,可能包含多个乐器同时发声和背景噪声。我们的方法不仅关注音频信息的分析,而且还利用了嵌入在音频和视觉域中的多模态信息。为了做到这一点,我们开发了一种卷积神经网络(CNN)架构,该架构在后期融合阶段结合了来自两种模式的学习表征。我们的方法在两个大型视频数据集上进行了训练和评估:YouTube-8M和FCVID。所提出的架构在音频和视频对象识别方面展示了最先进的结果,为缺失的模式提供了额外的鲁棒性,并且训练的计算成本很低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Musical Instrument Recognition in User-generated Videos using a Multimodal Convolutional Neural Network Architecture
This paper presents a method for recognizing musical instruments in user-generated videos. Musical instrument recognition from music signals is a well-known task in the music information retrieval (MIR) field, where current approaches rely on the analysis of the good-quality audio material. This work addresses a real-world scenario with several research challenges, i.e. the analysis of user-generated videos that are varied in terms of recording conditions and quality and may contain multiple instruments sounding simultaneously and background noise. Our approach does not only focus on the analysis of audio information, but we exploit the multimodal information embedded in the audio and visual domains. In order to do so, we develop a Convolutional Neural Network (CNN) architecture which combines learned representations from both modalities at a late fusion stage. Our approach is trained and evaluated on two large-scale video datasets: YouTube-8M and FCVID. The proposed architectures demonstrate state-of-the-art results in audio and video object recognition, provide additional robustness to missing modalities, and remains computationally cheap to train.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信