通过信念传播相互作用的粒子滤波器实时三维关节姿态跟踪

O. Bernier
{"title":"通过信念传播相互作用的粒子滤波器实时三维关节姿态跟踪","authors":"O. Bernier","doi":"10.1109/ICPR.2006.957","DOIUrl":null,"url":null,"abstract":"This article proposes a new statistical model for fast 3D articulated body tracking, similar to the loose-limbed model, but where inter-frame coherence is taken into account by using the previous marginal probability of each limb as prior information. Belief propagation is used to estimate the current marginal for each limb. All probability distribution are represented as sums of weighted samples. The resulting algorithm corresponds to a set of particle filters, one for each limb, where the weight of each sample, after the standard evaluation, is recalculated by taking into account the interactions between limbs. Applied to upper-body tracking in disparity and color images, the resulting algorithm estimates the body pose in quasi real-time (12Hz)","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Real-Time 3D Articulated Pose Tracking using Particle Filters Interacting through Belief Propagation\",\"authors\":\"O. Bernier\",\"doi\":\"10.1109/ICPR.2006.957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a new statistical model for fast 3D articulated body tracking, similar to the loose-limbed model, but where inter-frame coherence is taken into account by using the previous marginal probability of each limb as prior information. Belief propagation is used to estimate the current marginal for each limb. All probability distribution are represented as sums of weighted samples. The resulting algorithm corresponds to a set of particle filters, one for each limb, where the weight of each sample, after the standard evaluation, is recalculated by taking into account the interactions between limbs. Applied to upper-body tracking in disparity and color images, the resulting algorithm estimates the body pose in quasi real-time (12Hz)\",\"PeriodicalId\":236033,\"journal\":{\"name\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2006.957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文提出了一种新的三维关节体快速跟踪统计模型,该模型类似于松散肢体模型,但通过使用每个肢体的先前边缘概率作为先验信息来考虑帧间相干性。利用信念传播估计每个分支的当前边缘。所有的概率分布都表示为加权样本的和。得到的算法对应于一组粒子滤波器,每个粒子滤波器对应一个分支,每个样本在经过标准评估后,考虑分支之间的相互作用,重新计算权重。将该算法应用于视差图像和彩色图像的上半身跟踪,以准实时(12Hz)的速度估计身体姿态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time 3D Articulated Pose Tracking using Particle Filters Interacting through Belief Propagation
This article proposes a new statistical model for fast 3D articulated body tracking, similar to the loose-limbed model, but where inter-frame coherence is taken into account by using the previous marginal probability of each limb as prior information. Belief propagation is used to estimate the current marginal for each limb. All probability distribution are represented as sums of weighted samples. The resulting algorithm corresponds to a set of particle filters, one for each limb, where the weight of each sample, after the standard evaluation, is recalculated by taking into account the interactions between limbs. Applied to upper-body tracking in disparity and color images, the resulting algorithm estimates the body pose in quasi real-time (12Hz)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信