{"title":"基于线性核熵分量分析的手指静脉识别","authors":"S. Damavandinejadmonfared","doi":"10.1109/ICCP.2012.6356194","DOIUrl":null,"url":null,"abstract":"Based on the previous research, Kernel Entropy Component Analysis (KECA) is introduced as a more appropriate method than Kernel Principal Component Analysis (KPCA) for face recognition. In this paper, an algorithm using KECA is proposed to merit finger vein recognition. The proposed algorithm is then compared to Principal Component Analysis (PCA) and Different types of KECA in order to determine the most appropriate one in terms of finger vein recognition.","PeriodicalId":406461,"journal":{"name":"2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Finger vein recognition using linear Kernel Entropy Component Analysis\",\"authors\":\"S. Damavandinejadmonfared\",\"doi\":\"10.1109/ICCP.2012.6356194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the previous research, Kernel Entropy Component Analysis (KECA) is introduced as a more appropriate method than Kernel Principal Component Analysis (KPCA) for face recognition. In this paper, an algorithm using KECA is proposed to merit finger vein recognition. The proposed algorithm is then compared to Principal Component Analysis (PCA) and Different types of KECA in order to determine the most appropriate one in terms of finger vein recognition.\",\"PeriodicalId\":406461,\"journal\":{\"name\":\"2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCP.2012.6356194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2012.6356194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finger vein recognition using linear Kernel Entropy Component Analysis
Based on the previous research, Kernel Entropy Component Analysis (KECA) is introduced as a more appropriate method than Kernel Principal Component Analysis (KPCA) for face recognition. In this paper, an algorithm using KECA is proposed to merit finger vein recognition. The proposed algorithm is then compared to Principal Component Analysis (PCA) and Different types of KECA in order to determine the most appropriate one in terms of finger vein recognition.