{"title":"一种新的偏差补偿最小二乘方法用于连续多输入多输出系统辨识","authors":"H. Garnier, P. Sibille, H. Nguyen","doi":"10.1109/CCA.1994.381459","DOIUrl":null,"url":null,"abstract":"This paper presents a new bias-compensating least-squares method for the identification of continuous-time transfer function matrix model of multi-input multi-output (MIMO) systems. The proposed method uses the generalised Poisson moment functional approach for handling time derivatives and is applied to the identification of a laboratory-scale process which simulates industrial material transport control problems. Model validation results show the potentiality of the proposed method in practical applications.<<ETX>>","PeriodicalId":173370,"journal":{"name":"1994 Proceedings of IEEE International Conference on Control and Applications","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A new bias-compensating least-squares method for continuous-time MIMO system identification applied to a laboratory-scale process\",\"authors\":\"H. Garnier, P. Sibille, H. Nguyen\",\"doi\":\"10.1109/CCA.1994.381459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new bias-compensating least-squares method for the identification of continuous-time transfer function matrix model of multi-input multi-output (MIMO) systems. The proposed method uses the generalised Poisson moment functional approach for handling time derivatives and is applied to the identification of a laboratory-scale process which simulates industrial material transport control problems. Model validation results show the potentiality of the proposed method in practical applications.<<ETX>>\",\"PeriodicalId\":173370,\"journal\":{\"name\":\"1994 Proceedings of IEEE International Conference on Control and Applications\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1994 Proceedings of IEEE International Conference on Control and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.1994.381459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1994 Proceedings of IEEE International Conference on Control and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.1994.381459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new bias-compensating least-squares method for continuous-time MIMO system identification applied to a laboratory-scale process
This paper presents a new bias-compensating least-squares method for the identification of continuous-time transfer function matrix model of multi-input multi-output (MIMO) systems. The proposed method uses the generalised Poisson moment functional approach for handling time derivatives and is applied to the identification of a laboratory-scale process which simulates industrial material transport control problems. Model validation results show the potentiality of the proposed method in practical applications.<>