文本框的分类

Muhamad Jaliluddin Mazlan, Z. Ibrahim, Z. Kasiran
{"title":"文本框的分类","authors":"Muhamad Jaliluddin Mazlan, Z. Ibrahim, Z. Kasiran","doi":"10.1109/IRIS.2015.7451630","DOIUrl":null,"url":null,"abstract":"Text-frame classification for video is important prior to text detection and recognition to ensure that the text detection and recognition process is being conducted only for frames that consist of text. Otherwise, detecting and recognizing text on non-text frames will lead to false positive where non-text objects may be mistakenly classified as text. In this paper, we investigate the use of texture features for classifying the frame as either consists of text or not. This is because text has a different texture compared to the non-text. An experimental evaluation on Histogram of Oriented Gradient (HOG) and Scale-Invariant Feature Transform (SIFT) with Support Vector Machine (SVM), K-Nearest Neighbor (KNN) and AdaBoost classifiers has been conducted on ICDAR2003 dataset. The result indicates that SIFT outperforms the existing features for text-frame classification and Adaboost is a better text-frame classifier compared to KNN and SVM.","PeriodicalId":175861,"journal":{"name":"2015 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)","volume":"166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Text-frame classification\",\"authors\":\"Muhamad Jaliluddin Mazlan, Z. Ibrahim, Z. Kasiran\",\"doi\":\"10.1109/IRIS.2015.7451630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text-frame classification for video is important prior to text detection and recognition to ensure that the text detection and recognition process is being conducted only for frames that consist of text. Otherwise, detecting and recognizing text on non-text frames will lead to false positive where non-text objects may be mistakenly classified as text. In this paper, we investigate the use of texture features for classifying the frame as either consists of text or not. This is because text has a different texture compared to the non-text. An experimental evaluation on Histogram of Oriented Gradient (HOG) and Scale-Invariant Feature Transform (SIFT) with Support Vector Machine (SVM), K-Nearest Neighbor (KNN) and AdaBoost classifiers has been conducted on ICDAR2003 dataset. The result indicates that SIFT outperforms the existing features for text-frame classification and Adaboost is a better text-frame classifier compared to KNN and SVM.\",\"PeriodicalId\":175861,\"journal\":{\"name\":\"2015 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)\",\"volume\":\"166 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRIS.2015.7451630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRIS.2015.7451630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在文本检测和识别之前,视频的文本帧分类非常重要,以确保文本检测和识别过程仅对由文本组成的帧进行。否则,在非文本框架上检测和识别文本将导致误报,非文本对象可能被错误地分类为文本。在本文中,我们研究了使用纹理特征来分类框架是由文本组成还是不由文本组成。这是因为与非文本相比,文本具有不同的纹理。在ICDAR2003数据集上,利用支持向量机(SVM)、k -近邻(KNN)和AdaBoost分类器对定向梯度直方图(HOG)和尺度不变特征变换(SIFT)进行了实验评价。结果表明,SIFT在文本框架分类方面优于现有特征,Adaboost是一种比KNN和SVM更好的文本框架分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text-frame classification
Text-frame classification for video is important prior to text detection and recognition to ensure that the text detection and recognition process is being conducted only for frames that consist of text. Otherwise, detecting and recognizing text on non-text frames will lead to false positive where non-text objects may be mistakenly classified as text. In this paper, we investigate the use of texture features for classifying the frame as either consists of text or not. This is because text has a different texture compared to the non-text. An experimental evaluation on Histogram of Oriented Gradient (HOG) and Scale-Invariant Feature Transform (SIFT) with Support Vector Machine (SVM), K-Nearest Neighbor (KNN) and AdaBoost classifiers has been conducted on ICDAR2003 dataset. The result indicates that SIFT outperforms the existing features for text-frame classification and Adaboost is a better text-frame classifier compared to KNN and SVM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信