采用遗传算法和LMS算法混合确定未知系统辨识的自适应步长

H. Kim, T. Lee, D. Lim, D. Jung
{"title":"采用遗传算法和LMS算法混合确定未知系统辨识的自适应步长","authors":"H. Kim, T. Lee, D. Lim, D. Jung","doi":"10.1109/ICONIP.2002.1198172","DOIUrl":null,"url":null,"abstract":"We describe the application of a genetic algorithm (GA) to the problem of parameter optimization for an adaptive finite impulse response (FIR) filter combining genetic algorithm (GA) and least mean square (LMS) algorithm. For system identification problem, LMS algorithm computes the filter coefficients and GA search the optimal step-size adaptively. Because step-size influences on the stability and performance, so it is necessary to apply method that can control it. The simulation results of the GA were compared to the traditional LMS algorithm. We obtained that genetic algorithm was clearly superior (in accuracy) in most cases.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The hybrid method for determining an adaptive step size of the unknown system identification using genetic algorithm and LMS algorithm\",\"authors\":\"H. Kim, T. Lee, D. Lim, D. Jung\",\"doi\":\"10.1109/ICONIP.2002.1198172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the application of a genetic algorithm (GA) to the problem of parameter optimization for an adaptive finite impulse response (FIR) filter combining genetic algorithm (GA) and least mean square (LMS) algorithm. For system identification problem, LMS algorithm computes the filter coefficients and GA search the optimal step-size adaptively. Because step-size influences on the stability and performance, so it is necessary to apply method that can control it. The simulation results of the GA were compared to the traditional LMS algorithm. We obtained that genetic algorithm was clearly superior (in accuracy) in most cases.\",\"PeriodicalId\":146553,\"journal\":{\"name\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONIP.2002.1198172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1198172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

将遗传算法应用于遗传算法与最小均方算法相结合的自适应有限脉冲响应(FIR)滤波器参数优化问题。对于系统辨识问题,LMS算法计算滤波系数,遗传算法自适应搜索最优步长。由于步长影响系统的稳定性和性能,因此有必要采用能够控制步长的方法。将遗传算法的仿真结果与传统LMS算法进行了比较。我们得到遗传算法在大多数情况下明显优于(精度)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The hybrid method for determining an adaptive step size of the unknown system identification using genetic algorithm and LMS algorithm
We describe the application of a genetic algorithm (GA) to the problem of parameter optimization for an adaptive finite impulse response (FIR) filter combining genetic algorithm (GA) and least mean square (LMS) algorithm. For system identification problem, LMS algorithm computes the filter coefficients and GA search the optimal step-size adaptively. Because step-size influences on the stability and performance, so it is necessary to apply method that can control it. The simulation results of the GA were compared to the traditional LMS algorithm. We obtained that genetic algorithm was clearly superior (in accuracy) in most cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信