墨西哥城311 Locatel的自然语言处理模型

Alejandro Molina-Villegas, Edwin Aldana-Bibadilla, O. Siordia, Jorge Pérez
{"title":"墨西哥城311 Locatel的自然语言处理模型","authors":"Alejandro Molina-Villegas, Edwin Aldana-Bibadilla, O. Siordia, Jorge Pérez","doi":"10.52591/lxai202207101","DOIUrl":null,"url":null,"abstract":"Natural Language Processing based technologies are transforming various sectors by facilitating new ways of providing services through Artificial Intelligence (AI). In this paper, we describe the methodology and present the challenges encountered during the creation of a Deep Learning-based model for classifying citizen service requests. Our system is able to effectively recognize among 48 categories of public services with an accuracy of 97% and was integrated into Mexico City’s 311, significantly increasing the government’s ability to provide better services.","PeriodicalId":350984,"journal":{"name":"LatinX in AI at North American Chapter of the Association for Computational Linguistics Conference 2022","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incorporating Natural Language Processing models in Mexico City's 311 Locatel\",\"authors\":\"Alejandro Molina-Villegas, Edwin Aldana-Bibadilla, O. Siordia, Jorge Pérez\",\"doi\":\"10.52591/lxai202207101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural Language Processing based technologies are transforming various sectors by facilitating new ways of providing services through Artificial Intelligence (AI). In this paper, we describe the methodology and present the challenges encountered during the creation of a Deep Learning-based model for classifying citizen service requests. Our system is able to effectively recognize among 48 categories of public services with an accuracy of 97% and was integrated into Mexico City’s 311, significantly increasing the government’s ability to provide better services.\",\"PeriodicalId\":350984,\"journal\":{\"name\":\"LatinX in AI at North American Chapter of the Association for Computational Linguistics Conference 2022\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"LatinX in AI at North American Chapter of the Association for Computational Linguistics Conference 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52591/lxai202207101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"LatinX in AI at North American Chapter of the Association for Computational Linguistics Conference 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52591/lxai202207101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于自然语言处理的技术正在通过人工智能(AI)促进提供服务的新方式,从而改变各个部门。在本文中,我们描述了方法,并提出了在创建基于深度学习的公民服务请求分类模型过程中遇到的挑战。我们的系统能够有效识别48类公共服务,准确率达到97%,并被整合到墨西哥城的311中,大大提高了政府提供更好服务的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incorporating Natural Language Processing models in Mexico City's 311 Locatel
Natural Language Processing based technologies are transforming various sectors by facilitating new ways of providing services through Artificial Intelligence (AI). In this paper, we describe the methodology and present the challenges encountered during the creation of a Deep Learning-based model for classifying citizen service requests. Our system is able to effectively recognize among 48 categories of public services with an accuracy of 97% and was integrated into Mexico City’s 311, significantly increasing the government’s ability to provide better services.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信