人体运动重建中缺失标记的实时估计

Qiong Wu, P. Boulanger
{"title":"人体运动重建中缺失标记的实时估计","authors":"Qiong Wu, P. Boulanger","doi":"10.1109/SVR.2011.35","DOIUrl":null,"url":null,"abstract":"Optical motion capture is a prevalent technique for capturing and analyzing movement. However, a common problem in optical motion capture is the missing marker problem due to occlusions or ambiguities. Most methods for resolving this problem either require extensive post-processing efforts or become ineffective when a significant portion of markers are missing for extended periods of time. In this paper, we present an approach to reconstruct human motion corrupted in the presence of missing or mis-tracking markers. We propose a data-driven, piecewise linear predicting kalman filter framework to estimate missing marker position, and reconstruct human motion in real time by rigid body tracking solver. It allows us to accurately and effectively reconstruct human motion within a simple extrapolation framework. We demonstrate the effectiveness of our method on real motion data captured using OptiTrack. Our experimental results demonstrate that our method is efficient in recovering human motion.","PeriodicalId":287558,"journal":{"name":"2011 XIII Symposium on Virtual Reality","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Real-Time Estimation of Missing Markers for Reconstruction of Human Motion\",\"authors\":\"Qiong Wu, P. Boulanger\",\"doi\":\"10.1109/SVR.2011.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical motion capture is a prevalent technique for capturing and analyzing movement. However, a common problem in optical motion capture is the missing marker problem due to occlusions or ambiguities. Most methods for resolving this problem either require extensive post-processing efforts or become ineffective when a significant portion of markers are missing for extended periods of time. In this paper, we present an approach to reconstruct human motion corrupted in the presence of missing or mis-tracking markers. We propose a data-driven, piecewise linear predicting kalman filter framework to estimate missing marker position, and reconstruct human motion in real time by rigid body tracking solver. It allows us to accurately and effectively reconstruct human motion within a simple extrapolation framework. We demonstrate the effectiveness of our method on real motion data captured using OptiTrack. Our experimental results demonstrate that our method is efficient in recovering human motion.\",\"PeriodicalId\":287558,\"journal\":{\"name\":\"2011 XIII Symposium on Virtual Reality\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 XIII Symposium on Virtual Reality\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SVR.2011.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 XIII Symposium on Virtual Reality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SVR.2011.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

光学运动捕捉是一种流行的运动捕捉和分析技术。然而,光学运动捕捉中一个常见的问题是由于遮挡或模糊而导致的标记缺失问题。解决这个问题的大多数方法要么需要大量的后处理工作,要么在大量标记长时间丢失时变得无效。在本文中,我们提出了一种方法来重建在存在缺失或错误跟踪标记时损坏的人体运动。提出了一种数据驱动的分段线性预测卡尔曼滤波框架,用于估计缺失标记的位置,并通过刚体跟踪求解器实时重建人体运动。它允许我们在一个简单的外推框架内准确有效地重建人体运动。我们证明了我们的方法在使用OptiTrack捕获的真实运动数据上的有效性。实验结果表明,该方法对人体运动的恢复是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time Estimation of Missing Markers for Reconstruction of Human Motion
Optical motion capture is a prevalent technique for capturing and analyzing movement. However, a common problem in optical motion capture is the missing marker problem due to occlusions or ambiguities. Most methods for resolving this problem either require extensive post-processing efforts or become ineffective when a significant portion of markers are missing for extended periods of time. In this paper, we present an approach to reconstruct human motion corrupted in the presence of missing or mis-tracking markers. We propose a data-driven, piecewise linear predicting kalman filter framework to estimate missing marker position, and reconstruct human motion in real time by rigid body tracking solver. It allows us to accurately and effectively reconstruct human motion within a simple extrapolation framework. We demonstrate the effectiveness of our method on real motion data captured using OptiTrack. Our experimental results demonstrate that our method is efficient in recovering human motion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信