用HOSVD衍生的双谱特征分析正常和病理性婴儿哭声

Anshu Chittora, H. Patil
{"title":"用HOSVD衍生的双谱特征分析正常和病理性婴儿哭声","authors":"Anshu Chittora, H. Patil","doi":"10.1109/ICBAPS.2015.7292236","DOIUrl":null,"url":null,"abstract":"In this paper, bispectrum-based feature extraction method is proposed for classification of normal vs. pathological infant cries. Bispectrum is a class of higher order spectral analysis, Bispectrum is computed for all segments of normal as well as pathological cries. Bispectrum is a two-dimensional (i.e., 2-D) feature. A tensor is formed using these bispectrum features and then for feature reduction, higher order singular value decomposition theorem (HOSVD) is applied. Our experimental results show 98.94 % average accuracy of classification with support vector machine (SVM) classifier whereas baseline features, viz., Mel frequency cepstral coefficients (MFCC), perceptual linear prediction coefficients (PLP) and linear prediction coefficients (LPC) gave classification accuracy of 53.99 %, 63.14 % and 63.07 %, respectively. High classification accuracy of bispectrum can be attributed to its ability to capture nonlinearity in the signal.","PeriodicalId":243293,"journal":{"name":"2015 International Conference on BioSignal Analysis, Processing and Systems (ICBAPS)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Analysis of normal and pathological infant cries using bispectrum features derived using HOSVD\",\"authors\":\"Anshu Chittora, H. Patil\",\"doi\":\"10.1109/ICBAPS.2015.7292236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, bispectrum-based feature extraction method is proposed for classification of normal vs. pathological infant cries. Bispectrum is a class of higher order spectral analysis, Bispectrum is computed for all segments of normal as well as pathological cries. Bispectrum is a two-dimensional (i.e., 2-D) feature. A tensor is formed using these bispectrum features and then for feature reduction, higher order singular value decomposition theorem (HOSVD) is applied. Our experimental results show 98.94 % average accuracy of classification with support vector machine (SVM) classifier whereas baseline features, viz., Mel frequency cepstral coefficients (MFCC), perceptual linear prediction coefficients (PLP) and linear prediction coefficients (LPC) gave classification accuracy of 53.99 %, 63.14 % and 63.07 %, respectively. High classification accuracy of bispectrum can be attributed to its ability to capture nonlinearity in the signal.\",\"PeriodicalId\":243293,\"journal\":{\"name\":\"2015 International Conference on BioSignal Analysis, Processing and Systems (ICBAPS)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on BioSignal Analysis, Processing and Systems (ICBAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBAPS.2015.7292236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on BioSignal Analysis, Processing and Systems (ICBAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBAPS.2015.7292236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于双谱的婴儿啼哭特征提取方法。双谱是一类高阶谱分析,双谱计算适用于正常和病理哭声的所有片段。双谱是一个二维(即二维)特征。利用这些双谱特征形成一个张量,然后应用高阶奇异值分解定理(HOSVD)进行特征约简。实验结果表明,支持向量机(SVM)分类器的平均分类准确率为98.94%,而基线特征(即Mel频率反谱系数(MFCC)、感知线性预测系数(PLP)和线性预测系数(LPC)的分类准确率分别为53.99%、63.14%和63.07%。双谱的高分类精度可归因于其捕获信号非线性的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of normal and pathological infant cries using bispectrum features derived using HOSVD
In this paper, bispectrum-based feature extraction method is proposed for classification of normal vs. pathological infant cries. Bispectrum is a class of higher order spectral analysis, Bispectrum is computed for all segments of normal as well as pathological cries. Bispectrum is a two-dimensional (i.e., 2-D) feature. A tensor is formed using these bispectrum features and then for feature reduction, higher order singular value decomposition theorem (HOSVD) is applied. Our experimental results show 98.94 % average accuracy of classification with support vector machine (SVM) classifier whereas baseline features, viz., Mel frequency cepstral coefficients (MFCC), perceptual linear prediction coefficients (PLP) and linear prediction coefficients (LPC) gave classification accuracy of 53.99 %, 63.14 % and 63.07 %, respectively. High classification accuracy of bispectrum can be attributed to its ability to capture nonlinearity in the signal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信