RecPack:使用隐式反馈数据进行Top-N推荐的(另一个)实验工具包

L. Michiels, Robin Verachtert, Bart Goethals
{"title":"RecPack:使用隐式反馈数据进行Top-N推荐的(另一个)实验工具包","authors":"L. Michiels, Robin Verachtert, Bart Goethals","doi":"10.1145/3523227.3551472","DOIUrl":null,"url":null,"abstract":"RecPack is an easy-to-use, flexible and extensible toolkit for top-N recommendation with implicit feedback data. Its goal is to support researchers with the development of their recommendation algorithms, from similarity-based to deep learning algorithms, and allow for correct, reproducible and reusable experimentation. In this demo, we give an overview of the package and show how researchers can use it to their advantage when developing recommendation algorithms.","PeriodicalId":443279,"journal":{"name":"Proceedings of the 16th ACM Conference on Recommender Systems","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"RecPack: An(other) Experimentation Toolkit for Top-N Recommendation using Implicit Feedback Data\",\"authors\":\"L. Michiels, Robin Verachtert, Bart Goethals\",\"doi\":\"10.1145/3523227.3551472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RecPack is an easy-to-use, flexible and extensible toolkit for top-N recommendation with implicit feedback data. Its goal is to support researchers with the development of their recommendation algorithms, from similarity-based to deep learning algorithms, and allow for correct, reproducible and reusable experimentation. In this demo, we give an overview of the package and show how researchers can use it to their advantage when developing recommendation algorithms.\",\"PeriodicalId\":443279,\"journal\":{\"name\":\"Proceedings of the 16th ACM Conference on Recommender Systems\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3523227.3551472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3523227.3551472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

RecPack是一个易于使用,灵活和可扩展的工具包,用于隐式反馈数据的top-N推荐。它的目标是支持研究人员开发他们的推荐算法,从基于相似性的算法到深度学习算法,并允许正确、可重复和可重用的实验。在这个演示中,我们概述了这个包,并展示了研究人员在开发推荐算法时如何利用它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RecPack: An(other) Experimentation Toolkit for Top-N Recommendation using Implicit Feedback Data
RecPack is an easy-to-use, flexible and extensible toolkit for top-N recommendation with implicit feedback data. Its goal is to support researchers with the development of their recommendation algorithms, from similarity-based to deep learning algorithms, and allow for correct, reproducible and reusable experimentation. In this demo, we give an overview of the package and show how researchers can use it to their advantage when developing recommendation algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信