面向异构计算的可扩展相对论高分辨率冲击捕获

F. Glines, Matthew Anderson, D. Neilsen
{"title":"面向异构计算的可扩展相对论高分辨率冲击捕获","authors":"F. Glines, Matthew Anderson, D. Neilsen","doi":"10.1109/CLUSTER.2015.110","DOIUrl":null,"url":null,"abstract":"A shift is underway in high performance computing (HPC) towards heterogeneous parallel architectures that emphasize medium and fine grain thread parallelism. Many scientific computing algorithms, including simple finite-differencing methods, have already been mapped to heterogeneous architectures with order-of-magnitude gains in performance as a result. Recent case studies examining high-resolution shock-capturing (HRSC) algorithms suggest that these finite-volume methods are good candidates for emerging heterogeneous architectures. HRSC methods form a key scientific kernel for compressible inviscid solvers that appear in astrophysics and engineering applications and tend to require enormous memory and computing resources. This work presents a case study of an HRSC method executed on a heterogeneous parallel architecture utilizing hundreds of GPU enabled nodes with remote direct memory access to the GPUs for a non-trivial shock application using the relativistic magnetohydrodynamics model.","PeriodicalId":187042,"journal":{"name":"2015 IEEE International Conference on Cluster Computing","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Scalable Relativistic High-Resolution Shock-Capturing for Heterogeneous Computing\",\"authors\":\"F. Glines, Matthew Anderson, D. Neilsen\",\"doi\":\"10.1109/CLUSTER.2015.110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A shift is underway in high performance computing (HPC) towards heterogeneous parallel architectures that emphasize medium and fine grain thread parallelism. Many scientific computing algorithms, including simple finite-differencing methods, have already been mapped to heterogeneous architectures with order-of-magnitude gains in performance as a result. Recent case studies examining high-resolution shock-capturing (HRSC) algorithms suggest that these finite-volume methods are good candidates for emerging heterogeneous architectures. HRSC methods form a key scientific kernel for compressible inviscid solvers that appear in astrophysics and engineering applications and tend to require enormous memory and computing resources. This work presents a case study of an HRSC method executed on a heterogeneous parallel architecture utilizing hundreds of GPU enabled nodes with remote direct memory access to the GPUs for a non-trivial shock application using the relativistic magnetohydrodynamics model.\",\"PeriodicalId\":187042,\"journal\":{\"name\":\"2015 IEEE International Conference on Cluster Computing\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLUSTER.2015.110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTER.2015.110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

高性能计算(HPC)正在向强调中等和细粒度线程并行性的异构并行架构转变。许多科学计算算法,包括简单的有限差分方法,已经被映射到异构架构上,从而在性能上获得了数量级的提高。最近对高分辨率冲击捕获(HRSC)算法的案例研究表明,这些有限体积方法是新兴异构架构的良好候选者。HRSC方法是天体物理学和工程应用中出现的可压缩无粘解算的关键科学核心,往往需要大量的内存和计算资源。这项工作提出了一个在异构并行架构上执行的HRSC方法的案例研究,利用数百个启用GPU的节点,使用相对论磁流体力学模型远程直接内存访问GPU,用于非平凡的冲击应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable Relativistic High-Resolution Shock-Capturing for Heterogeneous Computing
A shift is underway in high performance computing (HPC) towards heterogeneous parallel architectures that emphasize medium and fine grain thread parallelism. Many scientific computing algorithms, including simple finite-differencing methods, have already been mapped to heterogeneous architectures with order-of-magnitude gains in performance as a result. Recent case studies examining high-resolution shock-capturing (HRSC) algorithms suggest that these finite-volume methods are good candidates for emerging heterogeneous architectures. HRSC methods form a key scientific kernel for compressible inviscid solvers that appear in astrophysics and engineering applications and tend to require enormous memory and computing resources. This work presents a case study of an HRSC method executed on a heterogeneous parallel architecture utilizing hundreds of GPU enabled nodes with remote direct memory access to the GPUs for a non-trivial shock application using the relativistic magnetohydrodynamics model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信