耦合逻辑映射中功能连通性的吸引子结构

Venetia Voutsa, Michail Papadopoulos, Vicky Papadopoulou Lesta, Marc-Thorsten Hütt
{"title":"耦合逻辑映射中功能连通性的吸引子结构","authors":"Venetia Voutsa, Michail Papadopoulos, Vicky Papadopoulou Lesta, Marc-Thorsten Hütt","doi":"10.1063/5.0150889","DOIUrl":null,"url":null,"abstract":"Stylized models of dynamical processes on graphs allow us to explore the relationships between network architecture and dynamics, a topic of relevance in a range of disciplines. One strategy is to translate dynamical observations into pairwise relationships of nodes, often called functional connectivity (FC), and quantitatively compare them with network architecture or structural connectivity (SC). Here, we start from the observation that for coupled logistic maps, SC/FC relationships vary strongly with coupling strength. Using symbolic encoding, the mapping of the dynamics onto a cellular automaton, and the subsequent analysis of the resulting attractors, we show that this behavior is invariant under these transformations and can be understood from the attractors of the cellular automaton alone. Interestingly, noise enhances SC/FC correlations by creating a more uniform sampling of attractors. On a methodological level, we introduce cellular automata as a data analysis tool, rather than a simulation model of dynamics on graphs.","PeriodicalId":340975,"journal":{"name":"Chaos: An Interdisciplinary Journal of Nonlinear Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The attractor structure of functional connectivity in coupled logistic maps\",\"authors\":\"Venetia Voutsa, Michail Papadopoulos, Vicky Papadopoulou Lesta, Marc-Thorsten Hütt\",\"doi\":\"10.1063/5.0150889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stylized models of dynamical processes on graphs allow us to explore the relationships between network architecture and dynamics, a topic of relevance in a range of disciplines. One strategy is to translate dynamical observations into pairwise relationships of nodes, often called functional connectivity (FC), and quantitatively compare them with network architecture or structural connectivity (SC). Here, we start from the observation that for coupled logistic maps, SC/FC relationships vary strongly with coupling strength. Using symbolic encoding, the mapping of the dynamics onto a cellular automaton, and the subsequent analysis of the resulting attractors, we show that this behavior is invariant under these transformations and can be understood from the attractors of the cellular automaton alone. Interestingly, noise enhances SC/FC correlations by creating a more uniform sampling of attractors. On a methodological level, we introduce cellular automata as a data analysis tool, rather than a simulation model of dynamics on graphs.\",\"PeriodicalId\":340975,\"journal\":{\"name\":\"Chaos: An Interdisciplinary Journal of Nonlinear Science\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos: An Interdisciplinary Journal of Nonlinear Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0150889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos: An Interdisciplinary Journal of Nonlinear Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0150889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图形上动态过程的程式化模型使我们能够探索网络架构和动态之间的关系,这是一个与一系列学科相关的主题。一种策略是将动态观察转化为节点的两两关系,通常称为功能连通性(FC),并将其与网络架构或结构连通性(SC)进行定量比较。在这里,我们从观察到耦合逻辑映射开始,SC/FC关系随着耦合强度的变化而强烈变化。使用符号编码,将动力学映射到元胞自动机上,以及随后对所产生的吸引子的分析,我们证明了这种行为在这些变换下是不变的,并且可以单独从元胞自动机的吸引子来理解。有趣的是,噪声通过创建更均匀的吸引子采样来增强SC/FC相关性。在方法层面上,我们引入元胞自动机作为数据分析工具,而不是图形上的动态模拟模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The attractor structure of functional connectivity in coupled logistic maps
Stylized models of dynamical processes on graphs allow us to explore the relationships between network architecture and dynamics, a topic of relevance in a range of disciplines. One strategy is to translate dynamical observations into pairwise relationships of nodes, often called functional connectivity (FC), and quantitatively compare them with network architecture or structural connectivity (SC). Here, we start from the observation that for coupled logistic maps, SC/FC relationships vary strongly with coupling strength. Using symbolic encoding, the mapping of the dynamics onto a cellular automaton, and the subsequent analysis of the resulting attractors, we show that this behavior is invariant under these transformations and can be understood from the attractors of the cellular automaton alone. Interestingly, noise enhances SC/FC correlations by creating a more uniform sampling of attractors. On a methodological level, we introduce cellular automata as a data analysis tool, rather than a simulation model of dynamics on graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信