短文本聚类的一致相似度度量

Youhyun Shin, Yeonchan Ahn, Heesik Jeon, Sang-goo Lee
{"title":"短文本聚类的一致相似度度量","authors":"Youhyun Shin, Yeonchan Ahn, Heesik Jeon, Sang-goo Lee","doi":"10.1109/DEXA.2015.65","DOIUrl":null,"url":null,"abstract":"Measuring semantic similarity between short texts is challenging because the meaning of short texts may vary dramatically even by a few words due to their limited lengths. In this paper, we propose a novel similarity measure for terms that allows better clustering performance than the state-of-the-art method. To achieve such performance, we incorporate knowledge-based and corpus-based term similarity measures in order to exploit advantages of both approaches. We apply our method to a dialog-utterance dataset, which consists of short dialog texts. Empirical study shows that the proposed method outperforms one of the state-of-the-art clustering algorithms for short text clustering.","PeriodicalId":239815,"journal":{"name":"2015 26th International Workshop on Database and Expert Systems Applications (DEXA)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Consensus Similarity Measure for Short Text Clustering\",\"authors\":\"Youhyun Shin, Yeonchan Ahn, Heesik Jeon, Sang-goo Lee\",\"doi\":\"10.1109/DEXA.2015.65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Measuring semantic similarity between short texts is challenging because the meaning of short texts may vary dramatically even by a few words due to their limited lengths. In this paper, we propose a novel similarity measure for terms that allows better clustering performance than the state-of-the-art method. To achieve such performance, we incorporate knowledge-based and corpus-based term similarity measures in order to exploit advantages of both approaches. We apply our method to a dialog-utterance dataset, which consists of short dialog texts. Empirical study shows that the proposed method outperforms one of the state-of-the-art clustering algorithms for short text clustering.\",\"PeriodicalId\":239815,\"journal\":{\"name\":\"2015 26th International Workshop on Database and Expert Systems Applications (DEXA)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 26th International Workshop on Database and Expert Systems Applications (DEXA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEXA.2015.65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 26th International Workshop on Database and Expert Systems Applications (DEXA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.2015.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

测量短文本之间的语义相似性是具有挑战性的,因为由于短文本的长度有限,即使是几个单词,其含义也可能发生巨大的变化。在本文中,我们提出了一种新的术语相似度度量,它比最先进的方法具有更好的聚类性能。为了达到这样的性能,我们结合了基于知识和基于语料库的术语相似度度量,以利用这两种方法的优点。我们将我们的方法应用于一个由短对话文本组成的对话-话语数据集。实证研究表明,本文提出的方法优于当前最先进的短文本聚类算法之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Consensus Similarity Measure for Short Text Clustering
Measuring semantic similarity between short texts is challenging because the meaning of short texts may vary dramatically even by a few words due to their limited lengths. In this paper, we propose a novel similarity measure for terms that allows better clustering performance than the state-of-the-art method. To achieve such performance, we incorporate knowledge-based and corpus-based term similarity measures in order to exploit advantages of both approaches. We apply our method to a dialog-utterance dataset, which consists of short dialog texts. Empirical study shows that the proposed method outperforms one of the state-of-the-art clustering algorithms for short text clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信