计算连续体的SPEC-RG参考体系结构

Matthijs Jansen, Auday Al-Dulaimy, A. Papadopoulos, A. Trivedi, A. Iosup
{"title":"计算连续体的SPEC-RG参考体系结构","authors":"Matthijs Jansen, Auday Al-Dulaimy, A. Papadopoulos, A. Trivedi, A. Iosup","doi":"10.1109/CCGrid57682.2023.00051","DOIUrl":null,"url":null,"abstract":"As the next generation of diverse workloads like autonomous driving and augmented/virtual reality evolves, computation is shifting from cloud-based services to the edge, leading to the emergence of a cloud-edge compute continuum. This continuum promises a wide spectrum of deployment opportunities for workloads that can leverage the strengths of cloud (scalable infrastructure, high reliability) and edge (energy efficient, low latencies). Despite its promises, the continuum has only been studied in silos of various computing models, thus lacking strong end-to-end theoretical and engineering foundations for computing and resource management across the continuum. Consequently, devel-opers resort to ad hoc approaches to reason about performance and resource utilization of workloads in the continuum. In this work, we conduct a first-of-its-kind systematic study of various computing models, identify salient properties, and make a case to unify them under a compute continuum reference architecture. This architecture provides an end-to-end analysis framework for developers to reason about resource management, workload distribution, and performance analysis. We demonstrate the utility of the reference architecture by analyzing two popular continuum workloads, deep learning and industrial IoT. We have developed an accompanying deployment and benchmarking framework and first-order analytical model for quantitative reasoning of continuum workloads. The framework is open-sourced and available at https://github.com/atlarge-research/continuum.","PeriodicalId":363806,"journal":{"name":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The SPEC-RG Reference Architecture for The Compute Continuum\",\"authors\":\"Matthijs Jansen, Auday Al-Dulaimy, A. Papadopoulos, A. Trivedi, A. Iosup\",\"doi\":\"10.1109/CCGrid57682.2023.00051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the next generation of diverse workloads like autonomous driving and augmented/virtual reality evolves, computation is shifting from cloud-based services to the edge, leading to the emergence of a cloud-edge compute continuum. This continuum promises a wide spectrum of deployment opportunities for workloads that can leverage the strengths of cloud (scalable infrastructure, high reliability) and edge (energy efficient, low latencies). Despite its promises, the continuum has only been studied in silos of various computing models, thus lacking strong end-to-end theoretical and engineering foundations for computing and resource management across the continuum. Consequently, devel-opers resort to ad hoc approaches to reason about performance and resource utilization of workloads in the continuum. In this work, we conduct a first-of-its-kind systematic study of various computing models, identify salient properties, and make a case to unify them under a compute continuum reference architecture. This architecture provides an end-to-end analysis framework for developers to reason about resource management, workload distribution, and performance analysis. We demonstrate the utility of the reference architecture by analyzing two popular continuum workloads, deep learning and industrial IoT. We have developed an accompanying deployment and benchmarking framework and first-order analytical model for quantitative reasoning of continuum workloads. The framework is open-sourced and available at https://github.com/atlarge-research/continuum.\",\"PeriodicalId\":363806,\"journal\":{\"name\":\"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGrid57682.2023.00051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid57682.2023.00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着自动驾驶和增强/虚拟现实等下一代不同工作负载的发展,计算正在从基于云的服务转向边缘,从而导致云边缘计算连续体的出现。这种连续性为工作负载提供了广泛的部署机会,可以利用云(可扩展的基础设施、高可靠性)和边缘(节能、低延迟)的优势。尽管它的承诺,连续体只在各种计算模型的筒仓中进行研究,因此缺乏强大的端到端计算和跨连续体资源管理的理论和工程基础。因此,开发人员采用特别的方法来分析连续体中工作负载的性能和资源利用率。在这项工作中,我们对各种计算模型进行了首次系统研究,确定了突出的属性,并提出了在计算连续体参考体系结构下统一它们的案例。该体系结构为开发人员提供了一个端到端的分析框架,用于分析资源管理、工作负载分布和性能分析。通过分析两种流行的连续工作负载,深度学习和工业物联网,我们展示了参考架构的实用性。我们已经开发了一个配套的部署和基准框架以及一阶分析模型,用于连续工作负载的定量推理。该框架是开源的,可以在https://github.com/atlarge-research/continuum上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The SPEC-RG Reference Architecture for The Compute Continuum
As the next generation of diverse workloads like autonomous driving and augmented/virtual reality evolves, computation is shifting from cloud-based services to the edge, leading to the emergence of a cloud-edge compute continuum. This continuum promises a wide spectrum of deployment opportunities for workloads that can leverage the strengths of cloud (scalable infrastructure, high reliability) and edge (energy efficient, low latencies). Despite its promises, the continuum has only been studied in silos of various computing models, thus lacking strong end-to-end theoretical and engineering foundations for computing and resource management across the continuum. Consequently, devel-opers resort to ad hoc approaches to reason about performance and resource utilization of workloads in the continuum. In this work, we conduct a first-of-its-kind systematic study of various computing models, identify salient properties, and make a case to unify them under a compute continuum reference architecture. This architecture provides an end-to-end analysis framework for developers to reason about resource management, workload distribution, and performance analysis. We demonstrate the utility of the reference architecture by analyzing two popular continuum workloads, deep learning and industrial IoT. We have developed an accompanying deployment and benchmarking framework and first-order analytical model for quantitative reasoning of continuum workloads. The framework is open-sourced and available at https://github.com/atlarge-research/continuum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信