{"title":"基于多尺度特征增强和群体注意的复杂环境下交通标志检测","authors":"JinFei Fu, Yinghua Zhou","doi":"10.1145/3529466.3529502","DOIUrl":null,"url":null,"abstract":"Since traffic light detection is essential for autonomous driving, it is studied intensively. However, traffic sign detection is difficult, especially in a complex environment. The traffic signs should be located first. Their unique features should be extracted next and fed into the classifier subsequently. In this paper, we adopt the current mainstream deep neural network-based object detection method for traffic sign detection. In our work, add specific environmental noise features to the dataset. A lightweight network, YOLOv4-Tiny, is chosen as the baseline network, and a multi-scale feature fusion module is designed to improve the performance of the network model. A lightweight group attention module is also designed. Experiments are carried out using the GTSDB dataset and the result shows the proposed model outperforms the other models in terms of precision and mAP.","PeriodicalId":375562,"journal":{"name":"Proceedings of the 2022 6th International Conference on Innovation in Artificial Intelligence","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traffic Sign Detection in Complex Environment based on Multi-Scale Feature Enhancement and Group Attention\",\"authors\":\"JinFei Fu, Yinghua Zhou\",\"doi\":\"10.1145/3529466.3529502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since traffic light detection is essential for autonomous driving, it is studied intensively. However, traffic sign detection is difficult, especially in a complex environment. The traffic signs should be located first. Their unique features should be extracted next and fed into the classifier subsequently. In this paper, we adopt the current mainstream deep neural network-based object detection method for traffic sign detection. In our work, add specific environmental noise features to the dataset. A lightweight network, YOLOv4-Tiny, is chosen as the baseline network, and a multi-scale feature fusion module is designed to improve the performance of the network model. A lightweight group attention module is also designed. Experiments are carried out using the GTSDB dataset and the result shows the proposed model outperforms the other models in terms of precision and mAP.\",\"PeriodicalId\":375562,\"journal\":{\"name\":\"Proceedings of the 2022 6th International Conference on Innovation in Artificial Intelligence\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 6th International Conference on Innovation in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3529466.3529502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Innovation in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3529466.3529502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Traffic Sign Detection in Complex Environment based on Multi-Scale Feature Enhancement and Group Attention
Since traffic light detection is essential for autonomous driving, it is studied intensively. However, traffic sign detection is difficult, especially in a complex environment. The traffic signs should be located first. Their unique features should be extracted next and fed into the classifier subsequently. In this paper, we adopt the current mainstream deep neural network-based object detection method for traffic sign detection. In our work, add specific environmental noise features to the dataset. A lightweight network, YOLOv4-Tiny, is chosen as the baseline network, and a multi-scale feature fusion module is designed to improve the performance of the network model. A lightweight group attention module is also designed. Experiments are carried out using the GTSDB dataset and the result shows the proposed model outperforms the other models in terms of precision and mAP.