{"title":"弥合了深度学习和稀疏矩阵格式选择之间的差距","authors":"Yue Zhao, Jiajia Li, C. Liao, Xipeng Shen","doi":"10.1145/3178487.3178495","DOIUrl":null,"url":null,"abstract":"This work presents a systematic exploration on the promise and special challenges of deep learning for sparse matrix format selection---a problem of determining the best storage format for a matrix to maximize the performance of Sparse Matrix Vector Multiplication (SpMV). It describes how to effectively bridge the gap between deep learning and the special needs of the pillar HPC problem through a set of techniques on matrix representations, deep learning structure, and cross-architecture model migrations. The new solution cuts format selection errors by two thirds, and improves SpMV performance by 1.73X on average over the state of the art.","PeriodicalId":193776,"journal":{"name":"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":"{\"title\":\"Bridging the gap between deep learning and sparse matrix format selection\",\"authors\":\"Yue Zhao, Jiajia Li, C. Liao, Xipeng Shen\",\"doi\":\"10.1145/3178487.3178495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a systematic exploration on the promise and special challenges of deep learning for sparse matrix format selection---a problem of determining the best storage format for a matrix to maximize the performance of Sparse Matrix Vector Multiplication (SpMV). It describes how to effectively bridge the gap between deep learning and the special needs of the pillar HPC problem through a set of techniques on matrix representations, deep learning structure, and cross-architecture model migrations. The new solution cuts format selection errors by two thirds, and improves SpMV performance by 1.73X on average over the state of the art.\",\"PeriodicalId\":193776,\"journal\":{\"name\":\"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"89\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3178487.3178495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3178487.3178495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bridging the gap between deep learning and sparse matrix format selection
This work presents a systematic exploration on the promise and special challenges of deep learning for sparse matrix format selection---a problem of determining the best storage format for a matrix to maximize the performance of Sparse Matrix Vector Multiplication (SpMV). It describes how to effectively bridge the gap between deep learning and the special needs of the pillar HPC problem through a set of techniques on matrix representations, deep learning structure, and cross-architecture model migrations. The new solution cuts format selection errors by two thirds, and improves SpMV performance by 1.73X on average over the state of the art.