弥合了深度学习和稀疏矩阵格式选择之间的差距

Yue Zhao, Jiajia Li, C. Liao, Xipeng Shen
{"title":"弥合了深度学习和稀疏矩阵格式选择之间的差距","authors":"Yue Zhao, Jiajia Li, C. Liao, Xipeng Shen","doi":"10.1145/3178487.3178495","DOIUrl":null,"url":null,"abstract":"This work presents a systematic exploration on the promise and special challenges of deep learning for sparse matrix format selection---a problem of determining the best storage format for a matrix to maximize the performance of Sparse Matrix Vector Multiplication (SpMV). It describes how to effectively bridge the gap between deep learning and the special needs of the pillar HPC problem through a set of techniques on matrix representations, deep learning structure, and cross-architecture model migrations. The new solution cuts format selection errors by two thirds, and improves SpMV performance by 1.73X on average over the state of the art.","PeriodicalId":193776,"journal":{"name":"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":"{\"title\":\"Bridging the gap between deep learning and sparse matrix format selection\",\"authors\":\"Yue Zhao, Jiajia Li, C. Liao, Xipeng Shen\",\"doi\":\"10.1145/3178487.3178495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a systematic exploration on the promise and special challenges of deep learning for sparse matrix format selection---a problem of determining the best storage format for a matrix to maximize the performance of Sparse Matrix Vector Multiplication (SpMV). It describes how to effectively bridge the gap between deep learning and the special needs of the pillar HPC problem through a set of techniques on matrix representations, deep learning structure, and cross-architecture model migrations. The new solution cuts format selection errors by two thirds, and improves SpMV performance by 1.73X on average over the state of the art.\",\"PeriodicalId\":193776,\"journal\":{\"name\":\"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"89\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3178487.3178495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3178487.3178495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89

摘要

这项工作对稀疏矩阵格式选择的深度学习的前景和特殊挑战进行了系统的探索——确定矩阵的最佳存储格式以最大化稀疏矩阵向量乘法(SpMV)的性能。它描述了如何通过一组关于矩阵表示、深度学习结构和跨架构模型迁移的技术,有效地弥合深度学习与支柱HPC问题的特殊需求之间的差距。新的解决方案将格式选择错误减少了三分之二,并将SpMV性能平均提高了1.73倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bridging the gap between deep learning and sparse matrix format selection
This work presents a systematic exploration on the promise and special challenges of deep learning for sparse matrix format selection---a problem of determining the best storage format for a matrix to maximize the performance of Sparse Matrix Vector Multiplication (SpMV). It describes how to effectively bridge the gap between deep learning and the special needs of the pillar HPC problem through a set of techniques on matrix representations, deep learning structure, and cross-architecture model migrations. The new solution cuts format selection errors by two thirds, and improves SpMV performance by 1.73X on average over the state of the art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信