{"title":"无监督协同提升聚类:多视图聚类、多共识聚类和替代聚类的统一框架","authors":"Jacques-Henri Sublemontier","doi":"10.1109/IJCNN.2013.6706911","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a collaborative framework that is able to solve multi-view and alternative clustering problems using some clustering ensemble and semi-supervised clustering principles. We provide a mechanism to control, via an information sharing model, different clustering algorithms to obtain consensus or alternative clustering solutions. The strong point is that our approach does not need to know which clustering algorithms to use nor their parameters.","PeriodicalId":376975,"journal":{"name":"The 2013 International Joint Conference on Neural Networks (IJCNN)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Unsupervised collaborative boosting of clustering: An unifying framework for multi-view clustering, multiple consensus clusterings and alternative clustering\",\"authors\":\"Jacques-Henri Sublemontier\",\"doi\":\"10.1109/IJCNN.2013.6706911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a collaborative framework that is able to solve multi-view and alternative clustering problems using some clustering ensemble and semi-supervised clustering principles. We provide a mechanism to control, via an information sharing model, different clustering algorithms to obtain consensus or alternative clustering solutions. The strong point is that our approach does not need to know which clustering algorithms to use nor their parameters.\",\"PeriodicalId\":376975,\"journal\":{\"name\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2013.6706911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2013.6706911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unsupervised collaborative boosting of clustering: An unifying framework for multi-view clustering, multiple consensus clusterings and alternative clustering
In this paper, we propose a collaborative framework that is able to solve multi-view and alternative clustering problems using some clustering ensemble and semi-supervised clustering principles. We provide a mechanism to control, via an information sharing model, different clustering algorithms to obtain consensus or alternative clustering solutions. The strong point is that our approach does not need to know which clustering algorithms to use nor their parameters.