提高智慧城市生活质量的多目标进化解决方案

M. Jarrah, Farah Al-Shrida
{"title":"提高智慧城市生活质量的多目标进化解决方案","authors":"M. Jarrah, Farah Al-Shrida","doi":"10.1109/HONET.2017.8102217","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the joint optimization of different smart grid components. Unlike most of previous works that optimize only one objective function, this paper proposes a multi-objective optimization solution that includes the energy cost, users' comfort level, and the lifetime of storage devices. Our solution is based on the Multi-Objective Evolutionary Algorithm (MOEA) framework. Experimental results, based on Reference Energy Disaggregation Data Set (REDD) representing real power demand from different houses, show that our solution provides energy saving by up to 46% while keeping the comfort level above 70% and the lifetime of storage devices above 8 years by reducing the number of charging/discharging cycles.","PeriodicalId":334264,"journal":{"name":"2017 14th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT (HONET-ICT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A multi-objective evolutionary solution to improve the quality of life in smart cities\",\"authors\":\"M. Jarrah, Farah Al-Shrida\",\"doi\":\"10.1109/HONET.2017.8102217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the joint optimization of different smart grid components. Unlike most of previous works that optimize only one objective function, this paper proposes a multi-objective optimization solution that includes the energy cost, users' comfort level, and the lifetime of storage devices. Our solution is based on the Multi-Objective Evolutionary Algorithm (MOEA) framework. Experimental results, based on Reference Energy Disaggregation Data Set (REDD) representing real power demand from different houses, show that our solution provides energy saving by up to 46% while keeping the comfort level above 70% and the lifetime of storage devices above 8 years by reducing the number of charging/discharging cycles.\",\"PeriodicalId\":334264,\"journal\":{\"name\":\"2017 14th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT (HONET-ICT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 14th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT (HONET-ICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HONET.2017.8102217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT (HONET-ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HONET.2017.8102217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了智能电网各组成部分的联合优化问题。与以往大多数研究只优化一个目标函数不同,本文提出了一个包括能源成本、用户舒适度和存储设备寿命在内的多目标优化方案。我们的解决方案基于多目标进化算法(MOEA)框架。基于代表不同家庭真实电力需求的参考能量分解数据集(REDD)的实验结果表明,我们的解决方案通过减少充电/放电循环次数,在节能高达46%的同时,将舒适性保持在70%以上,并将存储设备的使用寿命保持在8年以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-objective evolutionary solution to improve the quality of life in smart cities
In this paper, we investigate the joint optimization of different smart grid components. Unlike most of previous works that optimize only one objective function, this paper proposes a multi-objective optimization solution that includes the energy cost, users' comfort level, and the lifetime of storage devices. Our solution is based on the Multi-Objective Evolutionary Algorithm (MOEA) framework. Experimental results, based on Reference Energy Disaggregation Data Set (REDD) representing real power demand from different houses, show that our solution provides energy saving by up to 46% while keeping the comfort level above 70% and the lifetime of storage devices above 8 years by reducing the number of charging/discharging cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信