基于递归图的电能质量扰动分类的深度学习技术

Prity Soni, Debasmita Mondal, S. Chatterjee, Pankaj Mishra
{"title":"基于递归图的电能质量扰动分类的深度学习技术","authors":"Prity Soni, Debasmita Mondal, S. Chatterjee, Pankaj Mishra","doi":"10.1109/IPRECON55716.2022.10059470","DOIUrl":null,"url":null,"abstract":"The classification of power quality disturbances (PQDs) is essential for the stability and reliability of the power system. A method to categorize PQD incidents using a recurrence plot (RP) is developed in this work. RP technique is used to transform 1-D PQD into 2-D graphics. PQD events were produced in compliance with IEEE standard 1159–1995 in both single and multiple forms. The 2-D graphics created using RP is fed to the deep learning architectures: Googlenet, ResNet-50 and Alexnet. The features obtained from deep learning were classified using support vector machine, which shows the correct classification of 15 classes with 99.63% accuracy.","PeriodicalId":407222,"journal":{"name":"2022 IEEE International Power and Renewable Energy Conference (IPRECON)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Learning Technique for Recurrence Plot-based Classification of Power Quality Disturbances\",\"authors\":\"Prity Soni, Debasmita Mondal, S. Chatterjee, Pankaj Mishra\",\"doi\":\"10.1109/IPRECON55716.2022.10059470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classification of power quality disturbances (PQDs) is essential for the stability and reliability of the power system. A method to categorize PQD incidents using a recurrence plot (RP) is developed in this work. RP technique is used to transform 1-D PQD into 2-D graphics. PQD events were produced in compliance with IEEE standard 1159–1995 in both single and multiple forms. The 2-D graphics created using RP is fed to the deep learning architectures: Googlenet, ResNet-50 and Alexnet. The features obtained from deep learning were classified using support vector machine, which shows the correct classification of 15 classes with 99.63% accuracy.\",\"PeriodicalId\":407222,\"journal\":{\"name\":\"2022 IEEE International Power and Renewable Energy Conference (IPRECON)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Power and Renewable Energy Conference (IPRECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPRECON55716.2022.10059470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Power and Renewable Energy Conference (IPRECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPRECON55716.2022.10059470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

电能质量扰动的分类对电力系统的稳定性和可靠性至关重要。本文提出了一种使用递归图(RP)对PQD事件进行分类的方法。采用RP技术将1维PQD转换为2维图形。PQD事件以单一和多种形式按照IEEE标准1159-1995产生。使用RP创建的二维图形被馈送到深度学习架构:Googlenet, ResNet-50和Alexnet。利用支持向量机对深度学习得到的特征进行分类,对15个类别进行了正确分类,准确率达到99.63%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Technique for Recurrence Plot-based Classification of Power Quality Disturbances
The classification of power quality disturbances (PQDs) is essential for the stability and reliability of the power system. A method to categorize PQD incidents using a recurrence plot (RP) is developed in this work. RP technique is used to transform 1-D PQD into 2-D graphics. PQD events were produced in compliance with IEEE standard 1159–1995 in both single and multiple forms. The 2-D graphics created using RP is fed to the deep learning architectures: Googlenet, ResNet-50 and Alexnet. The features obtained from deep learning were classified using support vector machine, which shows the correct classification of 15 classes with 99.63% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信