{"title":"高阶Voronoi图的扫线算法","authors":"Maksym Zavershynskyi, Evanthia Papadopoulou","doi":"10.1109/ISVD.2013.17","DOIUrl":null,"url":null,"abstract":"We present an algorithm to construct order-k Voronoi diagrams with a sweepline technique. The sites can be points or line segments. The algorithm has O(nk2 log n) time complexity and O(nk) space complexity.","PeriodicalId":344701,"journal":{"name":"2013 10th International Symposium on Voronoi Diagrams in Science and Engineering","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A Sweepline Algorithm for Higher Order Voronoi Diagrams\",\"authors\":\"Maksym Zavershynskyi, Evanthia Papadopoulou\",\"doi\":\"10.1109/ISVD.2013.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an algorithm to construct order-k Voronoi diagrams with a sweepline technique. The sites can be points or line segments. The algorithm has O(nk2 log n) time complexity and O(nk) space complexity.\",\"PeriodicalId\":344701,\"journal\":{\"name\":\"2013 10th International Symposium on Voronoi Diagrams in Science and Engineering\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 10th International Symposium on Voronoi Diagrams in Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVD.2013.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Symposium on Voronoi Diagrams in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVD.2013.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Sweepline Algorithm for Higher Order Voronoi Diagrams
We present an algorithm to construct order-k Voronoi diagrams with a sweepline technique. The sites can be points or line segments. The algorithm has O(nk2 log n) time complexity and O(nk) space complexity.