使用数独数据立方体引擎聚合和探索高维数据

Sachin Basil John, P. Lindner, Zhekai Jiang, Christoph E. Koch
{"title":"使用数独数据立方体引擎聚合和探索高维数据","authors":"Sachin Basil John, P. Lindner, Zhekai Jiang, Christoph E. Koch","doi":"10.1145/3555041.3589729","DOIUrl":null,"url":null,"abstract":"We present Sudokube, a novel system that supports interactive speed querying on high-dimensional data using partially materialized data cubes. Given a storage budget, it judiciously chooses what projections to precompute and materialize during cube construction time. Then, at query time, it uses whatever information is available from the materialized projections and extrapolates missing information to approximate query results. Thus, Sudokube avoids costly projections at query time while also avoiding the astronomical compute and storage requirements needed for fully materialized high-dimensional data cubes. In this paper, we show the capabilities of the Sudokube system and how it approximates query results using different techniques and materialization strategies.","PeriodicalId":161812,"journal":{"name":"Companion of the 2023 International Conference on Management of Data","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aggregation and Exploration of High-Dimensional Data Using the Sudokube Data Cube Engine\",\"authors\":\"Sachin Basil John, P. Lindner, Zhekai Jiang, Christoph E. Koch\",\"doi\":\"10.1145/3555041.3589729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Sudokube, a novel system that supports interactive speed querying on high-dimensional data using partially materialized data cubes. Given a storage budget, it judiciously chooses what projections to precompute and materialize during cube construction time. Then, at query time, it uses whatever information is available from the materialized projections and extrapolates missing information to approximate query results. Thus, Sudokube avoids costly projections at query time while also avoiding the astronomical compute and storage requirements needed for fully materialized high-dimensional data cubes. In this paper, we show the capabilities of the Sudokube system and how it approximates query results using different techniques and materialization strategies.\",\"PeriodicalId\":161812,\"journal\":{\"name\":\"Companion of the 2023 International Conference on Management of Data\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion of the 2023 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3555041.3589729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2023 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555041.3589729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了Sudokube,一个新颖的系统,支持使用部分物化数据立方体对高维数据进行交互式速度查询。给定存储预算,它会明智地选择在多维数据集构建期间预先计算和实现哪些投影。然后,在查询时,它使用物化投影中可用的任何信息,并推断缺失的信息以近似查询结果。因此,Sudokube在查询时避免了昂贵的投影,同时也避免了完全具体化的高维数据立方体所需的天文数字的计算和存储需求。在本文中,我们展示了Sudokube系统的功能,以及它如何使用不同的技术和实现策略来近似查询结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aggregation and Exploration of High-Dimensional Data Using the Sudokube Data Cube Engine
We present Sudokube, a novel system that supports interactive speed querying on high-dimensional data using partially materialized data cubes. Given a storage budget, it judiciously chooses what projections to precompute and materialize during cube construction time. Then, at query time, it uses whatever information is available from the materialized projections and extrapolates missing information to approximate query results. Thus, Sudokube avoids costly projections at query time while also avoiding the astronomical compute and storage requirements needed for fully materialized high-dimensional data cubes. In this paper, we show the capabilities of the Sudokube system and how it approximates query results using different techniques and materialization strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信