小马兰戈尼数下具有平坦自由边界的二元混合物的旋转轴对称运动

V. Andreev, Natalya L. Sobachkina, Виктор К. Андреев, Наталья Л. Собачкина
{"title":"小马兰戈尼数下具有平坦自由边界的二元混合物的旋转轴对称运动","authors":"V. Andreev, Natalya L. Sobachkina, Виктор К. Андреев, Наталья Л. Собачкина","doi":"10.17516/1997-1397-2020-13-2-197-212","DOIUrl":null,"url":null,"abstract":"Abstract. Rotationally-axisymmetric motion of a binary mixture with a flat free boundary at small Marangoni numbers is investigated. The problem is reduced to the inverse linear initial-boundary value problem for parabolic equations. Using Laplace transformation properties the exact analytical solution is obtained. It is shown that a stationary solution is the limiting one with the growth of time if there is a certain relationship between the temperature of the solid wall and the external temperature of the gas. If there is no connection, the convergence to the stationary solution is broken. Some examples of numerical reconstruction of the temperature, concentration and velocity fields are given, which confirm the theoretical conclusions.","PeriodicalId":422202,"journal":{"name":"Journal of Siberian Federal University. Mathematics and Physics","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rotationally-axisymmetric Motion of a Binary Mixture with a Flat Free Boundary at Small Marangoni Numbers\",\"authors\":\"V. Andreev, Natalya L. Sobachkina, Виктор К. Андреев, Наталья Л. Собачкина\",\"doi\":\"10.17516/1997-1397-2020-13-2-197-212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Rotationally-axisymmetric motion of a binary mixture with a flat free boundary at small Marangoni numbers is investigated. The problem is reduced to the inverse linear initial-boundary value problem for parabolic equations. Using Laplace transformation properties the exact analytical solution is obtained. It is shown that a stationary solution is the limiting one with the growth of time if there is a certain relationship between the temperature of the solid wall and the external temperature of the gas. If there is no connection, the convergence to the stationary solution is broken. Some examples of numerical reconstruction of the temperature, concentration and velocity fields are given, which confirm the theoretical conclusions.\",\"PeriodicalId\":422202,\"journal\":{\"name\":\"Journal of Siberian Federal University. Mathematics and Physics\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Siberian Federal University. Mathematics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17516/1997-1397-2020-13-2-197-212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University. Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2020-13-2-197-212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要研究了具有平面自由边界的二元混合物在小马兰戈尼数下的旋转轴对称运动。将该问题简化为抛物型方程的逆线性初边值问题。利用拉普拉斯变换性质,得到了精确解析解。结果表明,当固壁温度与气体外部温度之间存在一定的关系时,随着时间的增长,固定解是极限解。如果没有联系,收敛到平稳解就会被破坏。给出了温度场、浓度场和速度场的数值重建实例,验证了理论结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rotationally-axisymmetric Motion of a Binary Mixture with a Flat Free Boundary at Small Marangoni Numbers
Abstract. Rotationally-axisymmetric motion of a binary mixture with a flat free boundary at small Marangoni numbers is investigated. The problem is reduced to the inverse linear initial-boundary value problem for parabolic equations. Using Laplace transformation properties the exact analytical solution is obtained. It is shown that a stationary solution is the limiting one with the growth of time if there is a certain relationship between the temperature of the solid wall and the external temperature of the gas. If there is no connection, the convergence to the stationary solution is broken. Some examples of numerical reconstruction of the temperature, concentration and velocity fields are given, which confirm the theoretical conclusions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信