电话日志似然比在口语识别中的应用

M. Díez, A. Varona, M. Peñagarikano, Luis Javier Rodriguez-Fuentes, Germán Bordel
{"title":"电话日志似然比在口语识别中的应用","authors":"M. Díez, A. Varona, M. Peñagarikano, Luis Javier Rodriguez-Fuentes, Germán Bordel","doi":"10.1109/SLT.2012.6424235","DOIUrl":null,"url":null,"abstract":"This paper presents an alternative feature set to the traditional MFCC-SDC used in acoustic approaches to Spoken Language Recognition: the log-likelihood ratios of phone posterior probabilities, hereafter Phone Log-Likelihood Ratios (PLLR), produced by a phone recognizer. In this work, an iVector system trained on this set of features (plus dynamic coefficients) is evaluated and compared to (1) an acoustic iVector system (trained on the MFCC-SDC feature set) and (2) a phonotactic (Phone-lattice-SVM) system, using two different benchmarks: the NIST 2007 and 2009 LRE datasets. iVector systems trained on PLLR features proved to be competitive, reaching or even outperforming the MFCC-SDC-based iVector and the phonotactic systems. The fusion of the proposed approach with the acoustic and phonotactic systems provided even more significant improvements, outperforming state-of-the-art systems on both benchmarks.","PeriodicalId":375378,"journal":{"name":"2012 IEEE Spoken Language Technology Workshop (SLT)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"On the use of phone log-likelihood ratios as features in spoken language recognition\",\"authors\":\"M. Díez, A. Varona, M. Peñagarikano, Luis Javier Rodriguez-Fuentes, Germán Bordel\",\"doi\":\"10.1109/SLT.2012.6424235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an alternative feature set to the traditional MFCC-SDC used in acoustic approaches to Spoken Language Recognition: the log-likelihood ratios of phone posterior probabilities, hereafter Phone Log-Likelihood Ratios (PLLR), produced by a phone recognizer. In this work, an iVector system trained on this set of features (plus dynamic coefficients) is evaluated and compared to (1) an acoustic iVector system (trained on the MFCC-SDC feature set) and (2) a phonotactic (Phone-lattice-SVM) system, using two different benchmarks: the NIST 2007 and 2009 LRE datasets. iVector systems trained on PLLR features proved to be competitive, reaching or even outperforming the MFCC-SDC-based iVector and the phonotactic systems. The fusion of the proposed approach with the acoustic and phonotactic systems provided even more significant improvements, outperforming state-of-the-art systems on both benchmarks.\",\"PeriodicalId\":375378,\"journal\":{\"name\":\"2012 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2012.6424235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2012.6424235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

摘要

本文提出了一种用于语音识别声学方法的传统MFCC-SDC的替代特征集:电话后验概率的对数似然比,以下简称电话对数似然比(PLLR),由电话识别器产生。在这项工作中,使用两个不同的基准:NIST 2007和2009 LRE数据集,评估了在这组特征(加上动态系数)上训练的矢量系统,并将其与(1)声学矢量系统(在MFCC-SDC特征集上训练)和(2)语音定向(电话格- svm)系统进行了比较。经过PLLR特征训练的矢量系统被证明具有竞争力,达到甚至超过了基于mfcc - sdc的矢量和声致化系统。所提出的方法与声学和声致音系统的融合提供了更显着的改进,在两个基准上都优于最先进的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the use of phone log-likelihood ratios as features in spoken language recognition
This paper presents an alternative feature set to the traditional MFCC-SDC used in acoustic approaches to Spoken Language Recognition: the log-likelihood ratios of phone posterior probabilities, hereafter Phone Log-Likelihood Ratios (PLLR), produced by a phone recognizer. In this work, an iVector system trained on this set of features (plus dynamic coefficients) is evaluated and compared to (1) an acoustic iVector system (trained on the MFCC-SDC feature set) and (2) a phonotactic (Phone-lattice-SVM) system, using two different benchmarks: the NIST 2007 and 2009 LRE datasets. iVector systems trained on PLLR features proved to be competitive, reaching or even outperforming the MFCC-SDC-based iVector and the phonotactic systems. The fusion of the proposed approach with the acoustic and phonotactic systems provided even more significant improvements, outperforming state-of-the-art systems on both benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信