基于残差的广义最小二乘非趋势数据协整检验

IF 2.9 4区 经济学 Q1 ECONOMICS
Pierre Perron, Gabriel Rodríguez
{"title":"基于残差的广义最小二乘非趋势数据协整检验","authors":"Pierre Perron,&nbsp;Gabriel Rodríguez","doi":"10.1111/ectj.12056","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We provide generalized least-squares (GLS) detrended versions of single-equation static regression or residuals-based tests for testing whether or not non-stationary time series are cointegrated. Our approach is to consider nearly optimal tests for unit roots and to apply them in the cointegration context. We derive the local asymptotic power functions of all tests considered for a triangular data-generating process, imposing a directional restriction such that the regressors are pure integrated processes. Our GLS versions of the tests do indeed provide substantial power improvements over their ordinary least-squares counterparts. Simulations show that the gains in power are important and stable across various configurations.</p></div>","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":"19 1","pages":"84-111"},"PeriodicalIF":2.9000,"publicationDate":"2015-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/ectj.12056","citationCount":"12","resultStr":"{\"title\":\"Residuals-based tests for cointegration with generalized least-squares detrended data\",\"authors\":\"Pierre Perron,&nbsp;Gabriel Rodríguez\",\"doi\":\"10.1111/ectj.12056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>We provide generalized least-squares (GLS) detrended versions of single-equation static regression or residuals-based tests for testing whether or not non-stationary time series are cointegrated. Our approach is to consider nearly optimal tests for unit roots and to apply them in the cointegration context. We derive the local asymptotic power functions of all tests considered for a triangular data-generating process, imposing a directional restriction such that the regressors are pure integrated processes. Our GLS versions of the tests do indeed provide substantial power improvements over their ordinary least-squares counterparts. Simulations show that the gains in power are important and stable across various configurations.</p></div>\",\"PeriodicalId\":50555,\"journal\":{\"name\":\"Econometrics Journal\",\"volume\":\"19 1\",\"pages\":\"84-111\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2015-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/ectj.12056\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics Journal\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12056\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12056","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 12

摘要

我们提供了广义最小二乘(GLS)去趋势版本的单方程静态回归或基于残差的检验来检验非平稳时间序列是否协整。我们的方法是考虑单位根的近最优检验,并将其应用于协整环境。我们推导了一个三角形数据生成过程的所有检验的局部渐近幂函数,施加了一个方向限制,使得回归量是纯积分过程。我们的GLS版本的测试确实比普通的最小二乘测试提供了大量的功率改进。仿真表明,在各种配置下,功率增益是重要且稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Residuals-based tests for cointegration with generalized least-squares detrended data

We provide generalized least-squares (GLS) detrended versions of single-equation static regression or residuals-based tests for testing whether or not non-stationary time series are cointegrated. Our approach is to consider nearly optimal tests for unit roots and to apply them in the cointegration context. We derive the local asymptotic power functions of all tests considered for a triangular data-generating process, imposing a directional restriction such that the regressors are pure integrated processes. Our GLS versions of the tests do indeed provide substantial power improvements over their ordinary least-squares counterparts. Simulations show that the gains in power are important and stable across various configurations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometrics Journal
Econometrics Journal 管理科学-数学跨学科应用
CiteScore
4.20
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信