通过并行范式进行周期性知识发现

K. Rani, V. K. Prasad, C. R. Rao
{"title":"通过并行范式进行周期性知识发现","authors":"K. Rani, V. K. Prasad, C. R. Rao","doi":"10.1109/PDGC.2012.6449932","DOIUrl":null,"url":null,"abstract":"Temporal association rules are largely different from traditional association rules by the fact that temporal association rules attempt to model temporal relationships in the data. Effective gain in any business is possible to achieve due to the adaptive knowledge which demands customized rules for specific conditions. Several parallel algorithms are useful to extract frequent patterns from large databases. This paper proposes a novel methodology for extracting calendric association rules and hence the general rules for a timestamp transactional database through modified Parallel Compact Pattern Tree construction strategy. The same has been demonstrated through mushroom dataset and synthetic temporal transactions.","PeriodicalId":166718,"journal":{"name":"2012 2nd IEEE International Conference on Parallel, Distributed and Grid Computing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic knowledge discovery through parallel paradigm\",\"authors\":\"K. Rani, V. K. Prasad, C. R. Rao\",\"doi\":\"10.1109/PDGC.2012.6449932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temporal association rules are largely different from traditional association rules by the fact that temporal association rules attempt to model temporal relationships in the data. Effective gain in any business is possible to achieve due to the adaptive knowledge which demands customized rules for specific conditions. Several parallel algorithms are useful to extract frequent patterns from large databases. This paper proposes a novel methodology for extracting calendric association rules and hence the general rules for a timestamp transactional database through modified Parallel Compact Pattern Tree construction strategy. The same has been demonstrated through mushroom dataset and synthetic temporal transactions.\",\"PeriodicalId\":166718,\"journal\":{\"name\":\"2012 2nd IEEE International Conference on Parallel, Distributed and Grid Computing\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 2nd IEEE International Conference on Parallel, Distributed and Grid Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDGC.2012.6449932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 2nd IEEE International Conference on Parallel, Distributed and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDGC.2012.6449932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

时间关联规则与传统的关联规则有很大的不同,因为时间关联规则试图对数据中的时间关系进行建模。任何业务的有效收益都是可能实现的,因为适应性知识需要针对特定条件定制规则。几种并行算法对于从大型数据库中提取频繁模式是有用的。本文提出了一种新的方法,通过改进的并行紧凑模式树构造策略提取时间戳事务数据库的日历关联规则,从而得到时间戳事务数据库的通用规则。通过蘑菇数据集和合成时间事务也证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic knowledge discovery through parallel paradigm
Temporal association rules are largely different from traditional association rules by the fact that temporal association rules attempt to model temporal relationships in the data. Effective gain in any business is possible to achieve due to the adaptive knowledge which demands customized rules for specific conditions. Several parallel algorithms are useful to extract frequent patterns from large databases. This paper proposes a novel methodology for extracting calendric association rules and hence the general rules for a timestamp transactional database through modified Parallel Compact Pattern Tree construction strategy. The same has been demonstrated through mushroom dataset and synthetic temporal transactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信