Chia-Ping Shen, Chih-Min Chan, Feng-Sheng Lin, M. Chiu, Jeng-Wei Lin, J. Kao, C. C. Chen, F. Lai
{"title":"基于支持向量机的多通道脑电信号癫痫发作检测","authors":"Chia-Ping Shen, Chih-Min Chan, Feng-Sheng Lin, M. Chiu, Jeng-Wei Lin, J. Kao, C. C. Chen, F. Lai","doi":"10.1109/BIBE.2011.13","DOIUrl":null,"url":null,"abstract":"Epilepsy is a common chronic neurological disorder characterized by recurrent unprovoked seizures. The electroencephalogram (EEG) signals play an important role in the diagnosis of epilepsy. In addition, multi-channel EEG signals have much more discrimination information than a single channel. However, traditional recognition algorithms of EEG signals are lack of multichannel EEG signals. In this paper, we propose a new method of epileptic seizure detection based on multichannel EEG signals. Both unipolar and bipolar EEG signals are considered in our approach. We make use of approximate entropy (ApEn) and statistic values to extract features. Furthermore, we tested the performance of four different Support Vector Machines (SVMs). The results reveal that the grid SVM achieves the highest totally classification accuracy (98.91%).","PeriodicalId":391184,"journal":{"name":"2011 IEEE 11th International Conference on Bioinformatics and Bioengineering","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Epileptic Seizure Detection for Multichannel EEG Signals with Support Vector Machines\",\"authors\":\"Chia-Ping Shen, Chih-Min Chan, Feng-Sheng Lin, M. Chiu, Jeng-Wei Lin, J. Kao, C. C. Chen, F. Lai\",\"doi\":\"10.1109/BIBE.2011.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epilepsy is a common chronic neurological disorder characterized by recurrent unprovoked seizures. The electroencephalogram (EEG) signals play an important role in the diagnosis of epilepsy. In addition, multi-channel EEG signals have much more discrimination information than a single channel. However, traditional recognition algorithms of EEG signals are lack of multichannel EEG signals. In this paper, we propose a new method of epileptic seizure detection based on multichannel EEG signals. Both unipolar and bipolar EEG signals are considered in our approach. We make use of approximate entropy (ApEn) and statistic values to extract features. Furthermore, we tested the performance of four different Support Vector Machines (SVMs). The results reveal that the grid SVM achieves the highest totally classification accuracy (98.91%).\",\"PeriodicalId\":391184,\"journal\":{\"name\":\"2011 IEEE 11th International Conference on Bioinformatics and Bioengineering\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 11th International Conference on Bioinformatics and Bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2011.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Bioinformatics and Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2011.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Epileptic Seizure Detection for Multichannel EEG Signals with Support Vector Machines
Epilepsy is a common chronic neurological disorder characterized by recurrent unprovoked seizures. The electroencephalogram (EEG) signals play an important role in the diagnosis of epilepsy. In addition, multi-channel EEG signals have much more discrimination information than a single channel. However, traditional recognition algorithms of EEG signals are lack of multichannel EEG signals. In this paper, we propose a new method of epileptic seizure detection based on multichannel EEG signals. Both unipolar and bipolar EEG signals are considered in our approach. We make use of approximate entropy (ApEn) and statistic values to extract features. Furthermore, we tested the performance of four different Support Vector Machines (SVMs). The results reveal that the grid SVM achieves the highest totally classification accuracy (98.91%).