基于支持向量机的多通道脑电信号癫痫发作检测

Chia-Ping Shen, Chih-Min Chan, Feng-Sheng Lin, M. Chiu, Jeng-Wei Lin, J. Kao, C. C. Chen, F. Lai
{"title":"基于支持向量机的多通道脑电信号癫痫发作检测","authors":"Chia-Ping Shen, Chih-Min Chan, Feng-Sheng Lin, M. Chiu, Jeng-Wei Lin, J. Kao, C. C. Chen, F. Lai","doi":"10.1109/BIBE.2011.13","DOIUrl":null,"url":null,"abstract":"Epilepsy is a common chronic neurological disorder characterized by recurrent unprovoked seizures. The electroencephalogram (EEG) signals play an important role in the diagnosis of epilepsy. In addition, multi-channel EEG signals have much more discrimination information than a single channel. However, traditional recognition algorithms of EEG signals are lack of multichannel EEG signals. In this paper, we propose a new method of epileptic seizure detection based on multichannel EEG signals. Both unipolar and bipolar EEG signals are considered in our approach. We make use of approximate entropy (ApEn) and statistic values to extract features. Furthermore, we tested the performance of four different Support Vector Machines (SVMs). The results reveal that the grid SVM achieves the highest totally classification accuracy (98.91%).","PeriodicalId":391184,"journal":{"name":"2011 IEEE 11th International Conference on Bioinformatics and Bioengineering","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Epileptic Seizure Detection for Multichannel EEG Signals with Support Vector Machines\",\"authors\":\"Chia-Ping Shen, Chih-Min Chan, Feng-Sheng Lin, M. Chiu, Jeng-Wei Lin, J. Kao, C. C. Chen, F. Lai\",\"doi\":\"10.1109/BIBE.2011.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epilepsy is a common chronic neurological disorder characterized by recurrent unprovoked seizures. The electroencephalogram (EEG) signals play an important role in the diagnosis of epilepsy. In addition, multi-channel EEG signals have much more discrimination information than a single channel. However, traditional recognition algorithms of EEG signals are lack of multichannel EEG signals. In this paper, we propose a new method of epileptic seizure detection based on multichannel EEG signals. Both unipolar and bipolar EEG signals are considered in our approach. We make use of approximate entropy (ApEn) and statistic values to extract features. Furthermore, we tested the performance of four different Support Vector Machines (SVMs). The results reveal that the grid SVM achieves the highest totally classification accuracy (98.91%).\",\"PeriodicalId\":391184,\"journal\":{\"name\":\"2011 IEEE 11th International Conference on Bioinformatics and Bioengineering\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 11th International Conference on Bioinformatics and Bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2011.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Bioinformatics and Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2011.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

癫痫是一种常见的慢性神经系统疾病,其特征是反复发作。脑电图信号在癫痫的诊断中起着重要的作用。此外,多通道脑电信号比单通道具有更多的识别信息。然而,传统的脑电信号识别算法缺乏对多通道脑电信号的识别。本文提出了一种基于多通道脑电信号的癫痫发作检测新方法。在我们的方法中考虑了单极和双极脑电图信号。我们利用近似熵(ApEn)和统计值提取特征。此外,我们测试了四种不同的支持向量机(svm)的性能。结果表明,网格支持向量机总体分类准确率最高(98.91%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Epileptic Seizure Detection for Multichannel EEG Signals with Support Vector Machines
Epilepsy is a common chronic neurological disorder characterized by recurrent unprovoked seizures. The electroencephalogram (EEG) signals play an important role in the diagnosis of epilepsy. In addition, multi-channel EEG signals have much more discrimination information than a single channel. However, traditional recognition algorithms of EEG signals are lack of multichannel EEG signals. In this paper, we propose a new method of epileptic seizure detection based on multichannel EEG signals. Both unipolar and bipolar EEG signals are considered in our approach. We make use of approximate entropy (ApEn) and statistic values to extract features. Furthermore, we tested the performance of four different Support Vector Machines (SVMs). The results reveal that the grid SVM achieves the highest totally classification accuracy (98.91%).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信