关于ZeaD的步长(Zhang et al .离散化)公式4IgS_Y,用于未来通过风扇方程最小化

Yunong Zhang, Zhiyuan Qi, H. Gong, Jian Li, Binbin Qiu
{"title":"关于ZeaD的步长(Zhang et al .离散化)公式4IgS_Y,用于未来通过风扇方程最小化","authors":"Yunong Zhang, Zhiyuan Qi, H. Gong, Jian Li, Binbin Qiu","doi":"10.1109/CCDC.2018.8407151","DOIUrl":null,"url":null,"abstract":"Future minimization, i.e., discrete time-varying minimization, is a difficult and meaningful problem. It has been successfully solved by Zhang et al using zeroing dynamics (ZD) and discretization formulas. In this paper, a type of discrete-time ZD (DT-ZD) model, which is obtained via utilizing ZeaD (Zhang et al Discretization) formula 4IgS_Y, is analyzed and investigated to ensure its stability. Specifically, via theoretical guarantees, we propose the step-length domain, or say, the effective domain of the step-length, which makes the discrete-time model stable. Additionally, we make further efforts to obtain the step-length optimum which provides the optimal stability of the DT-ZD model. Eventually, numerical experiments are performed to validate the step-length domain and the step-length optimum of the DT-ZD model for future minimization.","PeriodicalId":409960,"journal":{"name":"2018 Chinese Control And Decision Conference (CCDC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"About step-length of ZeaD (Zhang et al Discretization) formula 4IgS_Y for future minimization via fan equations\",\"authors\":\"Yunong Zhang, Zhiyuan Qi, H. Gong, Jian Li, Binbin Qiu\",\"doi\":\"10.1109/CCDC.2018.8407151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future minimization, i.e., discrete time-varying minimization, is a difficult and meaningful problem. It has been successfully solved by Zhang et al using zeroing dynamics (ZD) and discretization formulas. In this paper, a type of discrete-time ZD (DT-ZD) model, which is obtained via utilizing ZeaD (Zhang et al Discretization) formula 4IgS_Y, is analyzed and investigated to ensure its stability. Specifically, via theoretical guarantees, we propose the step-length domain, or say, the effective domain of the step-length, which makes the discrete-time model stable. Additionally, we make further efforts to obtain the step-length optimum which provides the optimal stability of the DT-ZD model. Eventually, numerical experiments are performed to validate the step-length domain and the step-length optimum of the DT-ZD model for future minimization.\",\"PeriodicalId\":409960,\"journal\":{\"name\":\"2018 Chinese Control And Decision Conference (CCDC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Chinese Control And Decision Conference (CCDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC.2018.8407151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Chinese Control And Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2018.8407151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

未来极小化,即离散时变极小化,是一个困难而又有意义的问题。Zhang等人利用归零动力学(ZD)和离散化公式成功地求解了该问题。本文对利用ZeaD (Zhang et al Discretization)公式4IgS_Y得到的一类离散时间ZD (DT-ZD)模型进行分析和研究,以保证其稳定性。具体地说,通过理论保证,我们提出了步长域,或者说,步长的有效域,使离散时间模型稳定。此外,我们进一步努力获得步长最优,以提供DT-ZD模型的最佳稳定性。最后,通过数值实验验证了DT-ZD模型的步长域和步长最优,以实现未来的最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
About step-length of ZeaD (Zhang et al Discretization) formula 4IgS_Y for future minimization via fan equations
Future minimization, i.e., discrete time-varying minimization, is a difficult and meaningful problem. It has been successfully solved by Zhang et al using zeroing dynamics (ZD) and discretization formulas. In this paper, a type of discrete-time ZD (DT-ZD) model, which is obtained via utilizing ZeaD (Zhang et al Discretization) formula 4IgS_Y, is analyzed and investigated to ensure its stability. Specifically, via theoretical guarantees, we propose the step-length domain, or say, the effective domain of the step-length, which makes the discrete-time model stable. Additionally, we make further efforts to obtain the step-length optimum which provides the optimal stability of the DT-ZD model. Eventually, numerical experiments are performed to validate the step-length domain and the step-length optimum of the DT-ZD model for future minimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信