{"title":"电子商务中个性化服务的设计与实现","authors":"Liu Xiao-liang","doi":"10.1109/ICCSIT.2009.5234605","DOIUrl":null,"url":null,"abstract":"Classical collaborative filtering recommendation is the most successful recommendation algorithm in electronic commerce system application. However, along with the continuous increase of site structure, content complexity and user number, data is extremely sparse and the real-time property and recommendation accuracy of algorithm decrease significantly, even no any commodity can be recommended. This paper classifies the users in electronic commerce by collaborative clustering and carries out different page recommendations for different types of users to realize the personalized service in electronic commerce.","PeriodicalId":342396,"journal":{"name":"2009 2nd IEEE International Conference on Computer Science and Information Technology","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and realization of personalized service in electronic commerce\",\"authors\":\"Liu Xiao-liang\",\"doi\":\"10.1109/ICCSIT.2009.5234605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classical collaborative filtering recommendation is the most successful recommendation algorithm in electronic commerce system application. However, along with the continuous increase of site structure, content complexity and user number, data is extremely sparse and the real-time property and recommendation accuracy of algorithm decrease significantly, even no any commodity can be recommended. This paper classifies the users in electronic commerce by collaborative clustering and carries out different page recommendations for different types of users to realize the personalized service in electronic commerce.\",\"PeriodicalId\":342396,\"journal\":{\"name\":\"2009 2nd IEEE International Conference on Computer Science and Information Technology\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 2nd IEEE International Conference on Computer Science and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSIT.2009.5234605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 2nd IEEE International Conference on Computer Science and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSIT.2009.5234605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and realization of personalized service in electronic commerce
Classical collaborative filtering recommendation is the most successful recommendation algorithm in electronic commerce system application. However, along with the continuous increase of site structure, content complexity and user number, data is extremely sparse and the real-time property and recommendation accuracy of algorithm decrease significantly, even no any commodity can be recommended. This paper classifies the users in electronic commerce by collaborative clustering and carries out different page recommendations for different types of users to realize the personalized service in electronic commerce.